Universität Wien FIND

250018 UE Tutorials on partial differential equations (2016S)

2.00 ECTS (1.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work

Summary

1 Elbau, Moodle
2 Elbau, Moodle

Registration/Deregistration

Groups

Group 1

max. 25 participants
Language: Deutsch
LMS: Moodle

Lecturers

Classes (iCal) - next class is marked with N

Friday 04.03. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 18.03. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 08.04. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 15.04. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 22.04. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 29.04. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 06.05. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 13.05. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 20.05. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 27.05. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 03.06. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 10.06. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 17.06. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 24.06. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock

Assessment and permitted materials

The grade is made up of
- the participation in the exercise classes (presentation of the exercises at the blackboard) and
- the result of one test during the semester.

Examination topics

Content of the lecture and the exercises.

Reading list

- L. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19, AMS, 2010
- W. A. Strauß, Partial Differential Equations: An Introduction, Wiley, 2008
- M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Springer, 2004
- G. B. Folland, Introduction to Partial Differential Equations, Princeton University Press, 1995

Group 2

max. 25 participants
Language: Deutsch
LMS: Moodle

Lecturers

Classes (iCal) - next class is marked with N

Friday 04.03. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 18.03. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 08.04. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 15.04. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 22.04. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 29.04. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 06.05. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 13.05. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 20.05. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 27.05. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 03.06. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 10.06. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 17.06. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 24.06. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock

Assessment and permitted materials

The grade is made up of
- the participation in the exercise classes (presentation of the exercises at the blackboard) and
- the result of one test during the semester.

Examination topics

Content of the lecture and the exercises.

Reading list

- L. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19, AMS, 2010
- W. A. Strauß, Partial Differential Equations: An Introduction, Wiley, 2008
- M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Springer, 2004
- G. B. Folland, Introduction to Partial Differential Equations, Princeton University Press, 1995

Information

Aims, contents and method of the course

- Fundamental examples of partial differential equations (Laplace equation, heat equation, wave equation),
- nonlinear partial differential equations of first order (method of characteristics),
- Fourier transform.

Minimum requirements and assessment criteria


Association in the course directory

DGL

Last modified: Mo 19.02.2018 11:49