Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform.

Further information about on-site teaching can be found at https://studieren.univie.ac.at/en/info.

250019 VO Complex analysis (2020W)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Wednesday 07.10. 11:30 - 13:00 Digital
Wednesday 14.10. 11:30 - 13:00 Digital
Wednesday 21.10. 11:30 - 13:00 Digital
Wednesday 28.10. 11:30 - 13:00 Digital
Wednesday 04.11. 11:30 - 13:00 Digital
Wednesday 11.11. 11:30 - 13:00 Digital
Wednesday 18.11. 11:30 - 13:00 Digital
Wednesday 25.11. 11:30 - 13:00 Digital
Wednesday 02.12. 11:30 - 13:00 Digital
Wednesday 09.12. 11:30 - 13:00 Digital
Wednesday 16.12. 11:30 - 13:00 Digital
Wednesday 13.01. 11:30 - 13:00 Digital
Wednesday 20.01. 11:30 - 13:00 Digital
Wednesday 27.01. 11:30 - 13:00 Digital

Information

Aims, contents and method of the course

complex numbers, holomorphic functions, the Cauchy-Riemann equations, power series, contour integrals, winding numbers, Cauchy's theorem and the Cauchy integral formula, expansion of holomorphic functions in power series, the Identity Theorem, zeros and singularities, the Mean Value Theorem and the Maximum Principle, Cauchy estimates and Liouville's Theorem, and, as far as the circumstances allow, also: Laurent series, the Residue Theorem and applications

Assessment and permitted materials

written examination, or, in case a written examination with physical presence is not possible, written online examination

Minimum requirements and assessment criteria

50% der bei der schriftlichen Prüfung erreichbaren Punkte sind für eine positive Note ausreichend.

Examination topics

Alle in der Vorlesung behandelten Inhalte.

Reading list

(1) F. Haslinger, Komplexe Analysis, Skriptum,
http://www.mat.univie.ac.at/%7Ehas/complex/scriptumII.pdf

(2) W. Rudin, Real and complex analysis, McGraw-Hill Book Co., 1987.

(3) S. Lang, Complex Analysis, Springer Verlag, 1999.

(4) R. Remmert and G. Schumacher, Funktionentheorie 1, Springer 2002.

(5) I. Stewart, D. Tall, Complex Analysis, Cambridge University Press, 2004.

Association in the course directory

KAN, UFMAMA02

Last modified: Fr 29.01.2021 13:49