250019 VO Complex analysis (2020W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Tuesday 02.02.2021 11:00 - 13:00 Digital
- Monday 22.03.2021 11:00 - 13:00 Digital
- Monday 28.06.2021 11:00 - 13:00 Digital
- Monday 20.09.2021 11:00 - 13:00 Digital
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 07.10. 11:30 - 13:00 Digital
- Wednesday 14.10. 11:30 - 13:00 Digital
- Wednesday 21.10. 11:30 - 13:00 Digital
- Wednesday 28.10. 11:30 - 13:00 Digital
- Wednesday 04.11. 11:30 - 13:00 Digital
- Wednesday 11.11. 11:30 - 13:00 Digital
- Wednesday 18.11. 11:30 - 13:00 Digital
- Wednesday 25.11. 11:30 - 13:00 Digital
- Wednesday 02.12. 11:30 - 13:00 Digital
- Wednesday 09.12. 11:30 - 13:00 Digital
- Wednesday 16.12. 11:30 - 13:00 Digital
- Wednesday 13.01. 11:30 - 13:00 Digital
- Wednesday 20.01. 11:30 - 13:00 Digital
- Wednesday 27.01. 11:30 - 13:00 Digital
Information
Aims, contents and method of the course
complex numbers, holomorphic functions, the Cauchy-Riemann equations, power series, contour integrals, winding numbers, Cauchy's theorem and the Cauchy integral formula, expansion of holomorphic functions in power series, the Identity Theorem, zeros and singularities, the Mean Value Theorem and the Maximum Principle, Cauchy estimates and Liouville's Theorem, and, as far as the circumstances allow, also: Laurent series, the Residue Theorem and applications
Assessment and permitted materials
written examination, or, in case a written examination with physical presence is not possible, written online examination
Minimum requirements and assessment criteria
50% der bei der schriftlichen Prüfung erreichbaren Punkte sind für eine positive Note ausreichend.
Examination topics
Alle in der Vorlesung behandelten Inhalte.
Reading list
(1) F. Haslinger, Komplexe Analysis, Skriptum,
http://www.mat.univie.ac.at/%7Ehas/complex/scriptumII.pdf(2) W. Rudin, Real and complex analysis, McGraw-Hill Book Co., 1987.(3) S. Lang, Complex Analysis, Springer Verlag, 1999.(4) R. Remmert and G. Schumacher, Funktionentheorie 1, Springer 2002.(5) I. Stewart, D. Tall, Complex Analysis, Cambridge University Press, 2004.
http://www.mat.univie.ac.at/%7Ehas/complex/scriptumII.pdf(2) W. Rudin, Real and complex analysis, McGraw-Hill Book Co., 1987.(3) S. Lang, Complex Analysis, Springer Verlag, 1999.(4) R. Remmert and G. Schumacher, Funktionentheorie 1, Springer 2002.(5) I. Stewart, D. Tall, Complex Analysis, Cambridge University Press, 2004.
Association in the course directory
KAN, UFMAMA02
Last modified: Fr 12.05.2023 00:21