250020 VO Number theory for pre-service teachers (2022S)
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Saturday 02.07.2022 11:30 - 13:00 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 09.08.2022
- Tuesday 30.08.2022
- Tuesday 06.09.2022
- Saturday 24.09.2022 11:30 - 13:00 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Saturday 01.10.2022
- Saturday 19.11.2022 11:30 - 13:00 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Saturday 14.01.2023 11:30 - 13:00 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 31.05.2023
- Saturday 03.06.2023 11:30 - 13:00 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 06.10.2023
- Monday 08.01.2024
- Monday 19.02.2024
- Tuesday 21.05.2024
Lecturers
Classes (iCal) - next class is marked with N
- Monday 07.03. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.03. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.03. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.03. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 04.04. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.04. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 02.05. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.05. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.05. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.05. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.05. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.06. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.06. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.06. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
One-hour written examination. Answering several questions students have to reproduce definitions, theorems, lemmas, corollaries and proofs presented in the lectures and have to demonstrate their ability to apply the calculation techniques covered. The detailed allocation of points is given on the examination paper. No aids are permitted. (This includes literature and pocket calculators.)
Minimum requirements and assessment criteria
The grade is determined by the percentage of the points achieved by the student.
Let n denote this percentage.
sehr gut [1]: 87,5% <= n <= 100% / gut [2]: 75% <= n < 87,5% / befriedigend [3]: 62,5% <= n < 75% / genügend [4]: 50% <= n < 62,5% / nicht genügend [5]: n < 50%
Let n denote this percentage.
sehr gut [1]: 87,5% <= n <= 100% / gut [2]: 75% <= n < 87,5% / befriedigend [3]: 62,5% <= n < 75% / genügend [4]: 50% <= n < 62,5% / nicht genügend [5]: n < 50%
Examination topics
At the exam students have to demonstrate their command of the definitions, lemmas, theorems, corollaries and proofs presented in the lectures and their ability to apply the calculation techniques covered.
Reading list
J. Buchmann, Einführung in die Kryptographie
P. Bundschuh, Einführung in die Zahlentheorie
G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers
N. Oswald, J. Steuding, Elementare Zahlentheorie
W. Sierpinski, Elementary Theory of Numbers
P. Bundschuh, Einführung in die Zahlentheorie
G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers
N. Oswald, J. Steuding, Elementare Zahlentheorie
W. Sierpinski, Elementary Theory of Numbers
Association in the course directory
UF MAMA02
Last modified: Fr 24.05.2024 00:14
The basic notions of divisor, gcd, lcm, prime numbers, congruences and residue class rings, and ensuing primality tests and divisibility rules,
Applications in daily life, such as determining the weekday for a given date (e.g., which day of the week was April 1, 2000?) or properties of check digits (e.g., ISBN which is used for books),
Applications to cryptography, such as the RSA cryptosystem, Diffie–Hellman key exchange, ElGamal encryption or the Shamir secret sharing scheme.
For more information (in German) go to http://www.mat.univie.ac.at/~baxa/ss2022zthla.html