Warning! The directory is not yet complete and will be amended until the beginning of the term.
250021 VO Ordinary differential equations (2015W)
Labels
Details
Language: German
Examination dates
- Friday 29.01.2016 16:45 - 18:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 29.02.2016 14:00 - 16:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 08.04.2016 13:15 - 15:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.04.2016
- Monday 19.03.2018
Lecturers
Classes (iCal) - next class is marked with N
- Monday 05.10. 12:15 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 05.10. 13:15 - 14:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.10. 15:00 - 15:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.10. 12:15 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.10. 13:15 - 14:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.10. 15:00 - 15:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 19.10. 12:15 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 19.10. 13:15 - 14:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.10. 15:00 - 15:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.10. 15:00 - 15:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 04.11. 15:00 - 15:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.11. 12:15 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.11. 13:15 - 14:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.11. 15:00 - 15:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.11. 12:15 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.11. 13:15 - 14:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.11. 15:00 - 15:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.11. 12:15 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.11. 13:15 - 14:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.11. 15:00 - 15:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.11. 12:15 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.11. 13:15 - 14:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 02.12. 15:00 - 15:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.12. 12:15 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.12. 13:15 - 14:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 09.12. 15:00 - 15:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.12. 12:15 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.12. 13:15 - 14:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 16.12. 15:00 - 15:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.01. 12:15 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.01. 13:15 - 14:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 13.01. 15:00 - 15:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.01. 12:15 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.01. 13:15 - 14:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 20.01. 15:00 - 15:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.01. 12:15 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.01. 13:15 - 14:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 27.01. 15:00 - 15:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Diese Vorlesung bietet eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Differentialgleichungen spielen eine zentrale Rolle in den Naturwissenschaften und dienen der Beschreibungen und Vorhersage zahlreicher grundlegender Gesetze und Vorgänge in der Physik, Biologie, Chemie, und vielen anderen Wissenschaften. Der Schwerpunkt der Vorlesung wird auf der Theorie der linearen (Systeme von) Differentialgleichungen liegen. Dabei wird besonders der geometrische Standpunkt bzw. jener der dynamischen Systeme hervorgehoben. Weiters werden die wichtigsten Existenz- und Eindeutigkeitssätze behandelt, Randwertprobleme werden angeschnitten, und die Grundlagen der Stabilitätstheorie nichtlinearer Systeme (Methode von Ljapunov) werden entwickelt.
Assessment and permitted materials
Schriftliche Prüfung
Minimum requirements and assessment criteria
Examination topics
Reading list
Empfohlene Literatur:Teschl G. Ordinary differential equations and dynamical systems. Amer. Math. Soc., 2012. (Siehe auch das Skriptum auf seiner Homepage)Hirsch MW, Smale S, and RL Devaney. Differential equations, dynamical systems, and an introduction to chaos. Academic Press, 2012. (Dieses Buch gibt es auch in Deutsch)Heuser H. Gewöhnliche Differentialgleichungen: Einführung in Lehre und Gebrauch. Springer-Verlag, 2013.
Association in the course directory
DGL
Last modified: Sa 26.02.2022 00:25