Universität Wien

250024 VO Introduction to topology (2010S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 01.03. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 08.03. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 15.03. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 22.03. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 12.04. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 19.04. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 26.04. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 03.05. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 10.05. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 17.05. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 31.05. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 07.06. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 14.06. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 21.06. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 28.06. 09:15 - 10:45 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum

Information

Aims, contents and method of the course

0. Review of topological concepts in R^n and in metric spaces
1. Topological spaces and continuity
2. Connectedness
3. Convergence
4. Separation and countability properties
5. Compactness
6. Complete metric spaces

Assessment and permitted materials

oral exam

Minimum requirements and assessment criteria

Basics of general topological concepts as prerequisites for many areas of mathematics.

Examination topics

definition, theorem, proof

Reading list

[1] A. Cap: Grundbegriffe der Topologie, Vorlesungsskriptum aus WS 2007/2008, Uni Wien, siehe http://www.mat.univie.ac.at/~cap/lectnotes.html

[2] J. Cigler / H.-C. Reichel: Topologie, Bibliographisches Institut, 2. Auflage 1987

[3] B. von Querenburg: Mengentheoretische Topologie, Springer, 3. Auflage 2001

[4] S. Willard: General Topology, Addison-Wesley 1970

Association in the course directory

HAN

Last modified: Th 31.10.2024 00:15