Universität Wien

250024 VO Number Theory (2023W)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik
ON-SITE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 02.10. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 04.10. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 09.10. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 16.10. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 18.10. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 23.10. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 30.10. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 06.11. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 13.11. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 15.11. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 20.11. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 27.11. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 29.11. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 04.12. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 11.12. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 13.12. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.01. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.01. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 17.01. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.01. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 29.01. 08:00 - 09:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Projected contents: Representation of integers by positive definite binary quadratic forms (in particular sum of 2 squares), by ternary quadratic forms (sum of 3 squares); representation of rational numbers by quadratic forms (p-adic numbers, local-global principle, Hasse invariant, Theorem of Minkowski-Hasse); Dirichlet's Theorem on primes in arithmetic progressions.

Assessment and permitted materials

Positive result on the written exam.

Minimum requirements and assessment criteria

Half of the maximal achievable points is required.

Examination topics

Complete contents of the lecture.

Reading list


Association in the course directory

ZT

Last modified: Fr 13.09.2024 11:26