250025 VO Introduction to topology (2016W)
Labels
Details
Language: German
Examination dates
- Friday 03.02.2017 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.02.2017 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 28.04.2017 13:15 - 15:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 23.06.2017 11:30 - 13:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 05.10. 13:45 - 15:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 12.10. 13:45 - 15:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.10. 13:45 - 15:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 09.11. 13:45 - 15:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 16.11. 13:45 - 15:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 23.11. 13:45 - 15:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 30.11. 13:45 - 15:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.12. 13:45 - 15:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.12. 13:45 - 15:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.01. 13:45 - 15:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.01. 13:45 - 15:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.01. 13:45 - 15:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam. No aids are permitted.
Minimum requirements and assessment criteria
50 percent of the maximum score of the written exam
Examination topics
Content of the course
Reading list
v. Querenburg: Mengentheoretische TopologieLaures, Szymik: Grundkurs TopologieBartsch: Allgemeine TopologieBourbaki: TopologyJänich: TopologieSchubert: Topologie
Association in the course directory
TFA
Last modified: Mo 07.09.2020 15:40
examines the properties of these notions in great generality. To this end it axiomatizes the concept of neighbourhood (or equivalently that of an open set) in the central notion of topological space, i.e. a topological space is a space for which a notion of neighbourhood is available. Building on this it is possible
to define concepts like convergence, continuity, connectedness and compactness and to examine their properties. Due to the great generality of its notions topology
has applications to a wide area of mathematics and in particular then makes possible to argue using geometric intuition (based on the notion of neighbourhood). Topology thus has become a foundational theory of mathematics.Content of the course: Departing from the courses Analysis 1 and 2 where topological notions appear for the first time we will introduce general topological spaces and study the basic topological
concepts convergence, continuity, compactness, connectedness and also techniques for constructing topological spaces.Aims: Knowledge and understanding of basic notions and methods of topology and their properties.
Understanding of applicability of abstract notions of topology e.g. in analysis.