Universität Wien

250025 VO Introduction to topology (2018W)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 04.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 11.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 18.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 25.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 08.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 15.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 22.11. 08:00 - 09:30 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 22.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 29.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 06.12. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 13.12. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 10.01. 08:00 - 09:30 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 10.01. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 17.01. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 24.01. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 31.01. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Toplogy provides a very general framework for the fundamental notions of convergence and continutiy, that students have met in the basic courses on analysis. This course develops the central part of this general theory, that gets used in large parts of mathematics as well as in many fields of applciations. Important special types of topological spaces will also be discussed.

Assessment and permitted materials

Written or oral exam after the end of the course.

Minimum requirements and assessment criteria

Students know the central results and concepts of (general) topology in the general setting of topological spaces. They are able to apply them to concrete problems.

Examination topics

The contents of the course.

Reading list

Lecture notes will be provided online via http://www.mat.univie.ac.at/~cap/lectnotes.html . There is a large number of books on general topology, the contents of the course are standard material that should be covered in most books.

Association in the course directory

TFA

Last modified: Mo 07.09.2020 15:40