250025 VO Introduction to topology (2018W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Friday 25.01.2019 11:30 - 13:00 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 22.03.2019 09:45 - 11:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 17.05.2019 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 07.06.2019
- Friday 21.06.2019
- Tuesday 13.08.2019
- Monday 07.10.2019
- Thursday 09.01.2020
- Monday 20.01.2020
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 04.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 11.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 18.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 25.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 08.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 15.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 22.11. 08:00 - 09:30 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 22.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 29.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 06.12. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 13.12. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 10.01. 08:00 - 09:30 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 10.01. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 17.01. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 24.01. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 31.01. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Toplogy provides a very general framework for the fundamental notions of convergence and continutiy, that students have met in the basic courses on analysis. This course develops the central part of this general theory, that gets used in large parts of mathematics as well as in many fields of applciations. Important special types of topological spaces will also be discussed.
Assessment and permitted materials
Written or oral exam after the end of the course.
Minimum requirements and assessment criteria
Students know the central results and concepts of (general) topology in the general setting of topological spaces. They are able to apply them to concrete problems.
Examination topics
The contents of the course.
Reading list
Lecture notes will be provided online via http://www.mat.univie.ac.at/~cap/lectnotes.html . There is a large number of books on general topology, the contents of the course are standard material that should be covered in most books.
Association in the course directory
TFA
Last modified: Mo 07.09.2020 15:40