250026 VO Algebraic structures (2012W)
Labels
Details
Language: German
Examination dates
- Friday 25.01.2013
- Friday 22.03.2013
- Friday 17.05.2013
- Monday 01.07.2013
- Wednesday 25.09.2013
- Friday 29.11.2013
- Friday 28.02.2014
- Friday 25.04.2014
- Friday 30.05.2014
- Monday 29.09.2014
- Wednesday 03.12.2014
Lecturers
Classes (iCal) - next class is marked with N
- Monday 01.10. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 08.10. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 15.10. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 22.10. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 29.10. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 05.11. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 12.11. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 19.11. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 26.11. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 03.12. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 10.12. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 17.12. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 07.01. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 14.01. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 21.01. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
- Monday 28.01. 11:00 - 13:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Information
Aims, contents and method of the course
This lecture will give an introduction to abstract algebra. We will cover the following objects and their properties pertaining to group theory: normal subgroups and quotient groups, isomorphism theorems, Lagrange's theorem, cyclic groups, products of groups, permutation groups. We will cover the following objects and their properties pertaining to ring theory: characteristic and prime rings, ideals and factor rings, isomorphism theorems, direct sums and direct products, polynomial rings, principal ideal domains, euclidean rings, chinese remainder theorem for rings, integral domains and quotient fields, unique factorization domains, irreducibility criteria. For more information (in German) go to http://www.mat.univie.ac.at/~baxa/ws1213.html
Assessment and permitted materials
Written or oral exam after the end of the semester.
Minimum requirements and assessment criteria
We will give an introduction to the basic ideas and results of abstract algebra.
Examination topics
The material will be presented by the lecturer.
Reading list
T.W. Hungerford, Algebra
J.C. Jantzen, J. Schwermer, Algebra
S. Lang, Algebra
J.C. Jantzen, J. Schwermer, Algebra
S. Lang, Algebra
Association in the course directory
EAL
Last modified: Th 31.10.2024 00:15