Universität Wien

250026 VO STEOP: Introduction to mathematical methodology (2025S)

10.00 ECTS (6.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 03.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 04.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 05.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 10.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 11.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 17.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 18.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 19.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 24.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 25.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 26.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 31.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 01.04. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 02.04. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 07.04. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 08.04. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 09.04. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 28.04. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 29.04. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 30.04. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 05.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 06.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 07.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 13.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 14.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 19.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 20.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 21.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 26.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 27.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 28.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 02.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 03.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 04.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 10.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 11.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 16.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 17.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 18.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 24.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 25.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 30.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

This lecture course and the corresponding tutorials is the first step in the Bachelor program in mathematics. It covers basics on the mathematical way of thinking and arguing, mathematical methods and the language of mathematics as well as the foundations of linear algebra and Analysis.

The contents of the course provide the basis for mathematical studies. A key aim is overcoming the discontinuity between the mathematics that is taught in schools and the at the University. Students have to apply the concepts and techniques taught in the course in to practical exercises in the tutorials.

Contents: mathematical thinking and mathematical language; proofs and induction; basics of logic; sets, functions and relations; natural numbers, integers, rational and real numbers; importatns algebraic structures; some foundational results of number theory. Basics of linear algebra in R^n, matrices and systems of linear equations; real and complex numbers, completeness; basic results on convergences of sequences and infinite sum and on Cauchy sequences.

Assessment and permitted materials

Written exam (StEOP) ; details will be added in due time. No materials permitted for the exam.

Minimum requirements and assessment criteria

At least half of the possible points have to be obtained in the written exam to successfully complete the course.

Examination topics

The contents of the lecture course.

Reading list

For the first part of the course, the contents can be found in Chapters 2 - 6 of the book "Einführung in das mathematische Arbeiten" by H. Schichl and R. Steinbauer ( 3. Auflage, Springer Verlag, 2018). Only part of the contents of the book will be presented and sometimes we will deviate from the book. For substantial deviations and for the topics from linear algebra and analysis, lecture notes will be provided in due time.

Association in the course directory

EMA

Last modified: Th 20.02.2025 10:06