250027 VO Linear algebra and mathematical analysis in several variables for pre-service teachers (2021W)
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Saturday 29.01.2022 11:30 - 13:00 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 14.02.2022
- Saturday 26.02.2022 13:15 - 14:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 04.04.2022
- Friday 22.04.2022 15:00 - 16:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Saturday 21.05.2022 11:30 - 13:00 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Saturday 02.07.2022
- Saturday 24.09.2022 13:15 - 14:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Saturday 19.11.2022 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Lecturers
Classes (iCal) - next class is marked with N
- Monday 04.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 06.10. 16:00 - 18:30 Digital
- Monday 11.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 13.10. 16:00 - 18:30 Digital
- Monday 18.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 20.10. 16:00 - 18:30 Digital
- Monday 25.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 27.10. 16:00 - 18:30 Digital
- Wednesday 03.11. 16:00 - 18:30 Digital
- Monday 08.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.11. 16:00 - 18:30 Digital
- Monday 15.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.11. 16:00 - 18:30 Digital
- Monday 22.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.11. 16:00 - 18:30 Digital
- Monday 29.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 01.12. 16:00 - 18:30 Digital
- Monday 06.12. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.12. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.12. 16:00 - 18:30 Digital
- Monday 10.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 12.01. 16:00 - 18:30 Digital
- Monday 17.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.01. 16:00 - 18:30 Digital
- Monday 24.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.01. 16:00 - 18:30 Digital
- Monday 31.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
In case of an exam on-site:
One-hour written examination. Answering several questions students have to reproduce definitions, theorems, lemmas, corollaries and proofs presented in the lectures and have to demonstrate their ability to apply the calculation techniques covered. The detailed allocation of points is given on the examination paper. No aids are permitted. (This includes literature and pocket calculators.)
One-hour written examination. Answering several questions students have to reproduce definitions, theorems, lemmas, corollaries and proofs presented in the lectures and have to demonstrate their ability to apply the calculation techniques covered. The detailed allocation of points is given on the examination paper. No aids are permitted. (This includes literature and pocket calculators.)
Minimum requirements and assessment criteria
The grade is determined by the percentage of the points achieved by the student.
Let n denote this percentage.
sehr gut [1]: 87,5% <= n <= 100% / gut [2]: 75% <= n < 87,5% / befriedigend [3]: 62,5% <= n < 75% / genügend [4]: 50% <= n < 62,5% / nicht genügend [5]: n < 50%
Let n denote this percentage.
sehr gut [1]: 87,5% <= n <= 100% / gut [2]: 75% <= n < 87,5% / befriedigend [3]: 62,5% <= n < 75% / genügend [4]: 50% <= n < 62,5% / nicht genügend [5]: n < 50%
Examination topics
At the exam students have to demonstrate their command of the definitions, lemmas, theorems, corollaries and proofs presented in the lectures and their ability to apply the calculation techniques covered.
Reading list
M. Koecher, Lineare Algebra und analytische Geometrie
H. Zieschang, Lineare Algebra und Geometrie
H. Heuser, Lehrbuch der Analysis
W. Walter, Analysis
H. Zieschang, Lineare Algebra und Geometrie
H. Heuser, Lehrbuch der Analysis
W. Walter, Analysis
Association in the course directory
UFMAMA01
Last modified: Fr 12.05.2023 00:21
1. Linear algebra with an emphasis on notions and results needed for multidimensional real analysis. In particular we will cover vector spaces, linear maps and bases and dimensions of vector spaces.
2. Multidimensional real analysis, including the notions of continuity, differentiability and integrability of functions of several real variables.
For more information (in German) go to http://www.mat.univie.ac.at/~baxa/ws2122.html