Universität Wien FIND

Return to Vienna for the summer semester of 2022. We are planning to hold courses mainly on site to enable the personal exchange between you, your teachers and fellow students. We have labelled digital and mixed courses in u:find accordingly.

Due to COVID-19, there might be changes at short notice (e.g. individual classes in a digital format). Obtain information about the current status on u:find and check your e-mails regularly.

Please read the information on https://studieren.univie.ac.at/en/info.

250027 VO Linear algebra and mathematical analysis in several variables for pre-service teachers (2021W)

8.00 ECTS (5.00 SWS), SPL 25 - Mathematik
MIXED

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Monday 04.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 06.10. 16:00 - 18:30 Digital
Monday 11.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 13.10. 16:00 - 18:30 Digital
Monday 18.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 20.10. 16:00 - 18:30 Digital
Monday 25.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 27.10. 16:00 - 18:30 Digital
Wednesday 03.11. 16:00 - 18:30 Digital
Monday 08.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 10.11. 16:00 - 18:30 Digital
Monday 15.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 17.11. 16:00 - 18:30 Digital
Monday 22.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 24.11. 16:00 - 18:30 Digital
Monday 29.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 01.12. 16:00 - 18:30 Digital
Monday 06.12. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday 13.12. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 15.12. 16:00 - 18:30 Digital
Monday 10.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 12.01. 16:00 - 18:30 Digital
Monday 17.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 19.01. 16:00 - 18:30 Digital
Monday 24.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 26.01. 16:00 - 18:30 Digital
Monday 31.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The lecture will give an introduction to the following two fields for future teachers:
1. Linear algebra with an emphasis on notions and results needed for multidimensional real analysis. In particular we will cover vector spaces, linear maps and bases and dimensions of vector spaces.
2. Multidimensional real analysis, including the notions of continuity, differentiability and integrability of functions of several real variables.
For more information (in German) go to http://www.mat.univie.ac.at/~baxa/ws2122.html

Assessment and permitted materials

In case of an exam on-site:
One-hour written examination. Answering several questions students have to reproduce definitions, theorems, lemmas, corollaries and proofs presented in the lectures and have to demonstrate their ability to apply the calculation techniques covered. The detailed allocation of points is given on the examination paper. No aids are permitted. (This includes literature and pocket calculators.)

Minimum requirements and assessment criteria

The grade is determined by the percentage of the points achieved by the student.
Let n denote this percentage.
sehr gut [1]: 87,5% <= n <= 100% / gut [2]: 75% <= n < 87,5% / befriedigend [3]: 62,5% <= n < 75% / genügend [4]: 50% <= n < 62,5% / nicht genügend [5]: n < 50%

Examination topics

At the exam students have to demonstrate their command of the definitions, lemmas, theorems, corollaries and proofs presented in the lectures and their ability to apply the calculation techniques covered.

Reading list

M. Koecher, Lineare Algebra und analytische Geometrie
H. Zieschang, Lineare Algebra und Geometrie
H. Heuser, Lehrbuch der Analysis
W. Walter, Analysis

Association in the course directory

UFMAMA01

Last modified: Mo 21.03.2022 09:09