250027 VO Linear algebra and mathematical analysis in several variables for pre-service teachers (2021W)
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
Saturday
29.01.2022
11:30 - 13:00
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Monday
14.02.2022
Saturday
26.02.2022
13:15 - 14:45
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
22.04.2022
15:00 - 16:30
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
N
Saturday
21.05.2022
11:30 - 13:00
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Lecturers
Classes (iCal) - next class is marked with N
Monday
04.10.
13:15 - 14:45
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
06.10.
16:00 - 18:30
Digital
Monday
11.10.
13:15 - 14:45
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
13.10.
16:00 - 18:30
Digital
Monday
18.10.
13:15 - 14:45
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
20.10.
16:00 - 18:30
Digital
Monday
25.10.
13:15 - 14:45
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
27.10.
16:00 - 18:30
Digital
Wednesday
03.11.
16:00 - 18:30
Digital
Monday
08.11.
13:15 - 14:45
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
10.11.
16:00 - 18:30
Digital
Monday
15.11.
13:15 - 14:45
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
17.11.
16:00 - 18:30
Digital
Monday
22.11.
13:15 - 14:45
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
24.11.
16:00 - 18:30
Digital
Monday
29.11.
13:15 - 14:45
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
01.12.
16:00 - 18:30
Digital
Monday
06.12.
13:15 - 14:45
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday
13.12.
13:15 - 14:45
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
15.12.
16:00 - 18:30
Digital
Monday
10.01.
13:15 - 14:45
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
12.01.
16:00 - 18:30
Digital
Monday
17.01.
13:15 - 14:45
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
19.01.
16:00 - 18:30
Digital
Monday
24.01.
13:15 - 14:45
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
26.01.
16:00 - 18:30
Digital
Monday
31.01.
13:15 - 14:45
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
In case of an exam on-site:
One-hour written examination. Answering several questions students have to reproduce definitions, theorems, lemmas, corollaries and proofs presented in the lectures and have to demonstrate their ability to apply the calculation techniques covered. The detailed allocation of points is given on the examination paper. No aids are permitted. (This includes literature and pocket calculators.)
One-hour written examination. Answering several questions students have to reproduce definitions, theorems, lemmas, corollaries and proofs presented in the lectures and have to demonstrate their ability to apply the calculation techniques covered. The detailed allocation of points is given on the examination paper. No aids are permitted. (This includes literature and pocket calculators.)
Minimum requirements and assessment criteria
The grade is determined by the percentage of the points achieved by the student.
Let n denote this percentage.
sehr gut [1]: 87,5% <= n <= 100% / gut [2]: 75% <= n < 87,5% / befriedigend [3]: 62,5% <= n < 75% / genügend [4]: 50% <= n < 62,5% / nicht genügend [5]: n < 50%
Let n denote this percentage.
sehr gut [1]: 87,5% <= n <= 100% / gut [2]: 75% <= n < 87,5% / befriedigend [3]: 62,5% <= n < 75% / genügend [4]: 50% <= n < 62,5% / nicht genügend [5]: n < 50%
Examination topics
At the exam students have to demonstrate their command of the definitions, lemmas, theorems, corollaries and proofs presented in the lectures and their ability to apply the calculation techniques covered.
Reading list
M. Koecher, Lineare Algebra und analytische Geometrie
H. Zieschang, Lineare Algebra und Geometrie
H. Heuser, Lehrbuch der Analysis
W. Walter, Analysis
H. Zieschang, Lineare Algebra und Geometrie
H. Heuser, Lehrbuch der Analysis
W. Walter, Analysis
Association in the course directory
UFMAMA01
Last modified: Mo 21.03.2022 09:09
1. Linear algebra with an emphasis on notions and results needed for multidimensional real analysis. In particular we will cover vector spaces, linear maps and bases and dimensions of vector spaces.
2. Multidimensional real analysis, including the notions of continuity, differentiability and integrability of functions of several real variables.
For more information (in German) go to http://www.mat.univie.ac.at/~baxa/ws2122.html