Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250029 VO Commutative Algebra and Algebraic Geometry (2023W)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik
ON-SITE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 05.10. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 11.10. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 12.10. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 19.10. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 25.10. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 08.11. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 09.11. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 16.11. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 22.11. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 23.11. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 30.11. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 06.12. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 07.12. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 10.01. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 11.01. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 18.01. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 24.01. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 25.01. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

This course will study the relationship between finitely generated commutative algebras over a field, in particular polynomial algebras, and affine varieties, defined by polynomial conditions in affine n-space. Topics to be covered include basic notions of commutative algebra: rings and their ideals, the Noetherian condition, the maximal and prime spectrum of an algebra, module theory, localisation, morphisms, the Nullstellensatz and Noether normalisation; as well as basic notions of algebraic geometry: affine varieties and their morphisms, the Zariski topology, non-singular and singular varieties and dimension theory.

Assessment and permitted materials

Minimum 50% achieved in the written examination.

Minimum requirements and assessment criteria

Written examination.

Examination topics

Topics covered in the lecture course.

Reading list

M. F. Atiyah, I. G. Macdonald: Introduction to commutative algebra. Addison-Wesley, 1969.
D. Cox, J. Little, D. O’Shea: Ideals, varieties and algorithms, Springer 1997.
D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer 1995.
M. Reid, Undergraduate algebraic geometry, CUP 1985.
M. Reid, Undergraduate commutative algebra, CUP


Association in the course directory

AGEO

Last modified: Mo 17.06.2024 13:26