Warning! The directory is not yet complete and will be amended until the beginning of the term.
250029 VO Commutative Algebra and Algebraic Geometry (2023W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Tuesday 06.02.2024 09:45 - 11:15 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 08.04.2024 13:15 - 14:45 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 03.09.2024 09:45 - 11:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 05.10. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.10. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 12.10. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 19.10. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.10. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 08.11. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.11. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.11. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.11. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.11. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.11. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 06.12. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.12. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.01. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 11.01. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 18.01. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.01. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 25.01. 16:45 - 18:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
This course will study the relationship between finitely generated commutative algebras over a field, in particular polynomial algebras, and affine varieties, defined by polynomial conditions in affine n-space. Topics to be covered include basic notions of commutative algebra: rings and their ideals, the Noetherian condition, the maximal and prime spectrum of an algebra, module theory, localisation, morphisms, the Nullstellensatz and Noether normalisation; as well as basic notions of algebraic geometry: affine varieties and their morphisms, the Zariski topology, non-singular and singular varieties and dimension theory.
Assessment and permitted materials
Minimum 50% achieved in the written examination.
Minimum requirements and assessment criteria
Written examination.
Examination topics
Topics covered in the lecture course.
Reading list
M. F. Atiyah, I. G. Macdonald: Introduction to commutative algebra. Addison-Wesley, 1969.
D. Cox, J. Little, D. O’Shea: Ideals, varieties and algorithms, Springer 1997.
D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer 1995.
M. Reid, Undergraduate algebraic geometry, CUP 1985.
M. Reid, Undergraduate commutative algebra, CUP
D. Cox, J. Little, D. O’Shea: Ideals, varieties and algorithms, Springer 1997.
D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer 1995.
M. Reid, Undergraduate algebraic geometry, CUP 1985.
M. Reid, Undergraduate commutative algebra, CUP
Association in the course directory
AGEO
Last modified: Mo 17.06.2024 13:26