Universität Wien

250030 VO Algebra (2012W)

7.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 03.10. 13:00 - 14:20 Seminarraum
  • Monday 08.10. 13:00 - 15:00 Seminarraum
  • Wednesday 10.10. 13:00 - 14:20 Seminarraum
  • Monday 15.10. 13:00 - 15:00 Seminarraum
  • Wednesday 17.10. 13:00 - 14:20 Seminarraum
  • Monday 22.10. 13:00 - 15:00 Seminarraum
  • Wednesday 24.10. 13:00 - 14:20 Seminarraum
  • Monday 29.10. 13:00 - 15:00 Seminarraum
  • Wednesday 31.10. 13:00 - 14:20 Seminarraum
  • Monday 05.11. 13:00 - 15:00 Seminarraum
  • Wednesday 07.11. 13:00 - 14:20 Seminarraum
  • Monday 12.11. 13:00 - 15:00 Seminarraum
  • Wednesday 14.11. 13:00 - 14:20 Seminarraum
  • Monday 19.11. 13:00 - 15:00 Seminarraum
  • Wednesday 21.11. 13:00 - 14:20 Seminarraum
  • Monday 26.11. 13:00 - 15:00 Seminarraum
  • Wednesday 28.11. 13:00 - 14:20 Seminarraum
  • Monday 03.12. 13:00 - 15:00 Seminarraum
  • Wednesday 05.12. 13:00 - 14:20 Seminarraum
  • Monday 10.12. 13:00 - 15:00 Seminarraum
  • Wednesday 12.12. 13:00 - 14:20 Seminarraum
  • Monday 17.12. 13:00 - 15:00 Seminarraum
  • Monday 07.01. 13:00 - 15:00 Seminarraum
  • Wednesday 09.01. 13:00 - 14:20 Seminarraum
  • Monday 14.01. 13:00 - 15:00 Seminarraum
  • Wednesday 16.01. 13:00 - 14:20 Seminarraum
  • Monday 21.01. 13:00 - 15:00 Seminarraum
  • Wednesday 23.01. 13:00 - 14:20 Seminarraum
  • Monday 28.01. 13:00 - 15:00 Seminarraum
  • Wednesday 30.01. 13:00 - 14:20 Seminarraum

Information

Aims, contents and method of the course

> The course continues and deepens the investigation of the basic algebraic structures groups, rings, fields. Emphasis will be placed on the investigation of fields an in particular of extensions of fields. Our aim is the main theorem of Galois theory which yields a description of a field extension via the corresponding symmetry group. Historically, the study of field extensions is motivated by the problem of solvability of algebraic equations by radicals and we want to describe the application of Galois theory to this problem. In particular, we will see that equations of degree 5 or bigger in general cannot be solved by radicals. Another topic will be group actions and the applications to the structure theory of finite groups ("Theorems of Sylow")

Assessment and permitted materials

written exam

Minimum requirements and assessment criteria

Ability to apply basic methods and techniques from the theory of field extensions and finite groups

Examination topics

lecture course

Reading list

Bosch: Algebra
Jantzen, Schwermer: Algebra
Karpfinger, Meyberg: Algebra
Hungerford: Algebra
Jacobson: Algebra 1,2
Lang: Algebra

Association in the course directory

ALG

Last modified: Mo 07.09.2020 15:40