250030 VO Algebra (2012W)
Labels
Details
Language: German
Examination dates
Monday
01.10.2012
Thursday
31.01.2013
Wednesday
06.03.2013
Wednesday
08.05.2013
Monday
01.07.2013
Thursday
11.07.2013
Thursday
20.03.2014
Thursday
03.04.2014
Friday
06.02.2015
Thursday
19.03.2015
Tuesday
27.09.2016
Lecturers
Classes (iCal) - next class is marked with N
Wednesday
03.10.
13:00 - 14:20
Seminarraum
Monday
08.10.
13:00 - 15:00
Seminarraum
Wednesday
10.10.
13:00 - 14:20
Seminarraum
Monday
15.10.
13:00 - 15:00
Seminarraum
Wednesday
17.10.
13:00 - 14:20
Seminarraum
Monday
22.10.
13:00 - 15:00
Seminarraum
Wednesday
24.10.
13:00 - 14:20
Seminarraum
Monday
29.10.
13:00 - 15:00
Seminarraum
Wednesday
31.10.
13:00 - 14:20
Seminarraum
Monday
05.11.
13:00 - 15:00
Seminarraum
Wednesday
07.11.
13:00 - 14:20
Seminarraum
Monday
12.11.
13:00 - 15:00
Seminarraum
Wednesday
14.11.
13:00 - 14:20
Seminarraum
Monday
19.11.
13:00 - 15:00
Seminarraum
Wednesday
21.11.
13:00 - 14:20
Seminarraum
Monday
26.11.
13:00 - 15:00
Seminarraum
Wednesday
28.11.
13:00 - 14:20
Seminarraum
Monday
03.12.
13:00 - 15:00
Seminarraum
Wednesday
05.12.
13:00 - 14:20
Seminarraum
Monday
10.12.
13:00 - 15:00
Seminarraum
Wednesday
12.12.
13:00 - 14:20
Seminarraum
Monday
17.12.
13:00 - 15:00
Seminarraum
Monday
07.01.
13:00 - 15:00
Seminarraum
Wednesday
09.01.
13:00 - 14:20
Seminarraum
Monday
14.01.
13:00 - 15:00
Seminarraum
Wednesday
16.01.
13:00 - 14:20
Seminarraum
Monday
21.01.
13:00 - 15:00
Seminarraum
Wednesday
23.01.
13:00 - 14:20
Seminarraum
Monday
28.01.
13:00 - 15:00
Seminarraum
Wednesday
30.01.
13:00 - 14:20
Seminarraum
Information
Aims, contents and method of the course
> The course continues and deepens the investigation of the basic algebraic structures groups, rings, fields. Emphasis will be placed on the investigation of fields an in particular of extensions of fields. Our aim is the main theorem of Galois theory which yields a description of a field extension via the corresponding symmetry group. Historically, the study of field extensions is motivated by the problem of solvability of algebraic equations by radicals and we want to describe the application of Galois theory to this problem. In particular, we will see that equations of degree 5 or bigger in general cannot be solved by radicals. Another topic will be group actions and the applications to the structure theory of finite groups ("Theorems of Sylow")
Assessment and permitted materials
written exam
Minimum requirements and assessment criteria
Ability to apply basic methods and techniques from the theory of field extensions and finite groups
Examination topics
lecture course
Reading list
Bosch: Algebra
Jantzen, Schwermer: Algebra
Karpfinger, Meyberg: Algebra
Hungerford: Algebra
Jacobson: Algebra 1,2
Lang: Algebra
Jantzen, Schwermer: Algebra
Karpfinger, Meyberg: Algebra
Hungerford: Algebra
Jacobson: Algebra 1,2
Lang: Algebra
Association in the course directory
ALG
Last modified: Mo 07.09.2020 15:40