250036 VO Number theory (2011S)
Labels
Details
Language: German
Examination dates
- Wednesday 08.06.2011
- Thursday 30.06.2011
- Monday 04.07.2011
- Wednesday 20.07.2011
- Monday 29.08.2011
- Monday 12.09.2011
- Friday 14.10.2011
- Monday 24.10.2011
- Friday 25.11.2011
- Thursday 01.12.2011
- Friday 02.12.2011
- Friday 09.12.2011
- Wednesday 14.12.2011
- Friday 16.12.2011
- Monday 19.12.2011
- Monday 09.01.2012
- Friday 20.01.2012
- Thursday 01.03.2012
- Wednesday 09.05.2012
- Monday 01.10.2012
- Tuesday 12.07.2016
Lecturers
Classes (iCal) - next class is marked with N
- Monday 07.03. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 21.03. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 28.03. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 04.04. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 11.04. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 02.05. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 09.05. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 16.05. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 23.05. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 30.05. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 06.06. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 20.06. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 27.06. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Information
Aims, contents and method of the course
Assessment and permitted materials
Schriftliche Prüfung (zweistündig)
Minimum requirements and assessment criteria
This course provides an introduction into the fundamental concepts and
results of Number Theory. We shall discuss in particular:
divisibility, prime numbers, gcd and lcm, Euclidian algorithm, congruences, chinese remainder theorem, Euler's totient function, Fermat's little theorem, quadratic reciprocity, continued fractions.
results of Number Theory. We shall discuss in particular:
divisibility, prime numbers, gcd and lcm, Euclidian algorithm, congruences, chinese remainder theorem, Euler's totient function, Fermat's little theorem, quadratic reciprocity, continued fractions.
Examination topics
This course provides an introduction into the fundamental concepts and
results of Number Theory. We shall discuss in particular:
divisibility, prime numbers, gcd and lcm, Euclidian algorithm, congruences, chinese remainder theorem, Euler's totient function, Fermat's little theorem, quadratic reciprocity, continued fractions.
results of Number Theory. We shall discuss in particular:
divisibility, prime numbers, gcd and lcm, Euclidian algorithm, congruences, chinese remainder theorem, Euler's totient function, Fermat's little theorem, quadratic reciprocity, continued fractions.
Reading list
* P. Bundschuh, Einführung in die Zahlentheori
* G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers
* E. Hlawka, J. Schoißengeier, Zahlentheorie. Eine Einführung
* G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers
* E. Hlawka, J. Schoißengeier, Zahlentheorie. Eine Einführung
Association in the course directory
EAL
Last modified: Sa 02.04.2022 00:24
results of Number Theory. We shall discuss in particular:
divisibility, prime numbers, gcd and lcm, Euclidian algorithm, congruences, chinese remainder theorem, Euler's totient function, Fermat's little theorem, quadratic reciprocity, continued fractions.