Universität Wien

250036 VO Number theory (2011S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 07.03. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 21.03. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 28.03. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 04.04. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 11.04. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 02.05. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 09.05. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 16.05. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 23.05. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 30.05. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 06.06. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 20.06. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 27.06. 11:00 - 13:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum

Information

Aims, contents and method of the course

This course provides an introduction into the fundamental concepts and
results of Number Theory. We shall discuss in particular:
divisibility, prime numbers, gcd and lcm, Euclidian algorithm, congruences, chinese remainder theorem, Euler's totient function, Fermat's little theorem, quadratic reciprocity, continued fractions.

Assessment and permitted materials

Schriftliche Prüfung (zweistündig)

Minimum requirements and assessment criteria

This course provides an introduction into the fundamental concepts and
results of Number Theory. We shall discuss in particular:
divisibility, prime numbers, gcd and lcm, Euclidian algorithm, congruences, chinese remainder theorem, Euler's totient function, Fermat's little theorem, quadratic reciprocity, continued fractions.

Examination topics

This course provides an introduction into the fundamental concepts and
results of Number Theory. We shall discuss in particular:
divisibility, prime numbers, gcd and lcm, Euclidian algorithm, congruences, chinese remainder theorem, Euler's totient function, Fermat's little theorem, quadratic reciprocity, continued fractions.

Reading list

* P. Bundschuh, Einführung in die Zahlentheori
* G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers
* E. Hlawka, J. Schoißengeier, Zahlentheorie. Eine Einführung

Association in the course directory

EAL

Last modified: Sa 02.04.2022 00:24