Universit├Ąt Wien FIND

Return to Vienna for the summer semester of 2022. We are planning to hold courses mainly on site to enable the personal exchange between you, your teachers and fellow students. We have labelled digital and mixed courses in u:find accordingly.

Due to COVID-19, there might be changes at short notice (e.g. individual classes in a digital format). Obtain information about the current status on u:find and check your e-mails regularly.

Please read the information on https://studieren.univie.ac.at/en/info.

250036 VO An overview on algebra (2012W)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Wednesday 03.10. 11:15 - 12:45 Seminarraum
Monday 08.10. 13:15 - 14:45 Seminarraum
Wednesday 10.10. 11:15 - 12:45 Seminarraum
Monday 15.10. 13:15 - 14:45 Seminarraum
Wednesday 17.10. 11:15 - 12:45 Seminarraum
Monday 22.10. 13:15 - 14:45 Seminarraum
Wednesday 24.10. 11:15 - 12:45 Seminarraum
Monday 29.10. 13:15 - 14:45 Seminarraum
Wednesday 31.10. 11:15 - 12:45 Seminarraum
Monday 05.11. 13:15 - 14:45 Seminarraum
Wednesday 07.11. 11:15 - 12:45 Seminarraum
Monday 12.11. 13:15 - 14:45 Seminarraum
Wednesday 14.11. 11:15 - 12:45 Seminarraum
Monday 19.11. 13:15 - 14:45 Seminarraum
Wednesday 21.11. 11:15 - 12:45 Seminarraum
Monday 26.11. 13:15 - 14:45 Seminarraum
Wednesday 28.11. 11:15 - 12:45 Seminarraum
Monday 03.12. 13:15 - 14:45 Seminarraum
Wednesday 05.12. 11:15 - 12:45 Seminarraum
Monday 10.12. 13:15 - 14:45 Seminarraum
Wednesday 12.12. 11:15 - 12:45 Seminarraum
Monday 17.12. 13:15 - 14:45 Seminarraum
Monday 07.01. 13:15 - 14:45 Seminarraum
Wednesday 09.01. 11:15 - 12:45 Seminarraum
Monday 14.01. 13:15 - 14:45 Seminarraum
Wednesday 16.01. 11:15 - 12:45 Seminarraum
Monday 21.01. 13:15 - 14:45 Seminarraum
Wednesday 23.01. 11:15 - 12:45 Seminarraum
Monday 28.01. 13:15 - 14:45 Seminarraum
Wednesday 30.01. 11:15 - 12:45 Seminarraum

Information

Aims, contents and method of the course

The main topics of the lecture include groups, rings of polynomials and
finite fields as well as their applications such as Polya's denumeration
theory, Groebner bases and coding theory.

Assessment and permitted materials

written exam

Minimum requirements and assessment criteria

The methods and concepts of abstract algebra shall be presented in the
context of their applications.

Examination topics

The methods and concepts of abstract algebra shall be presented in the
context of their applications.

Reading list

N. Lauritzen, Concrete abstract algebra Lidl/Pilz, Angewandte abstrakte Algebra

Association in the course directory

UEB

Last modified: Mo 07.09.2020 15:40