250038 VO School mathematics 1 (Arithmetic and Algebra) (2010W)
Labels
Details
Language: German
Examination dates
Monday
14.02.2011
Monday
28.02.2011
Tuesday
01.03.2011
Monday
07.03.2011
Tuesday
05.04.2011
Tuesday
12.04.2011
Wednesday
27.04.2011
Thursday
26.05.2011
Tuesday
07.06.2011
Wednesday
08.06.2011
Thursday
09.06.2011
Monday
20.06.2011
Wednesday
29.06.2011
Monday
11.07.2011
Wednesday
10.08.2011
Thursday
29.09.2011
Tuesday
29.11.2011
Thursday
19.01.2012
Tuesday
07.02.2012
Thursday
23.02.2012
Tuesday
27.03.2012
Tuesday
15.05.2012
Thursday
31.05.2012
Thursday
11.10.2012
Thursday
11.10.2012
Tuesday
26.02.2013
Friday
19.04.2013
Monday
27.05.2013
Monday
07.10.2013
Monday
05.05.2014
Wednesday
11.06.2014
Thursday
17.07.2014
Monday
09.03.2015
Thursday
21.05.2015
Lecturers
Classes (iCal) - next class is marked with N
Monday
04.10.
15:15 - 16:45
Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Monday
11.10.
15:15 - 16:45
Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Monday
18.10.
15:15 - 16:45
Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Monday
25.10.
15:15 - 16:45
Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Monday
08.11.
15:15 - 16:45
Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Monday
15.11.
15:15 - 16:45
Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Monday
22.11.
15:15 - 16:45
Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Monday
29.11.
15:15 - 16:45
Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Monday
06.12.
15:15 - 16:45
Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Monday
13.12.
15:15 - 16:45
Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Monday
10.01.
15:15 - 16:45
Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Monday
17.01.
15:15 - 16:45
Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Monday
24.01.
15:15 - 16:45
Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Monday
31.01.
15:15 - 16:45
Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
Information
Aims, contents and method of the course
Assessment and permitted materials
Mündliche Kolloquien.
Minimum requirements and assessment criteria
Preparation for a competent planing of mathematics education concerning central fields at secondary level one and two.
Examination topics
Typical lecture with possibility to discuss with the lecturer.
Reading list
Fischer, Roland und Malle, Günther: Mensch und Mathematik. BI
Wissenschaftsverlag, Bibliographisches Institut Mannhein/Wien/Zürich 1985.
Gorski, Hans-Joachim und Müller-Philipp, Susanne: Leitfaden Arithmetik. Für Studierende der Lehrämter. Vieweg, Braunschweig/Wiesbaden 1999.
Henn, Hans-Wolfgang: Elementare Geometrie und Algebra. Vieweg, Wiesbaden 2003.
Kuba, Gerald und Götz, Stefan: Zahlen; erschienen in der Reihe "Fischer
Kompakt". S. Fischer Verlag, Frankfurt am Main 2004.
Leuders, Timo: Erlebnis Arithmetik zum aktiven Entdecken und selbstständigen Erarbeiten. Mathematik Primarstufe und Sekundarstufe I + II. Spektrum Akademischer Verlag, Heidelberg 2010.
Malle, Günther: Didaktische Probleme der elementaren Algebra. Vieweg,
Braunschweig u. a. 1993.
Scheid, Harald: Elemente der Arithmetik und Algebra. BI Wissenschaftsverlag, Mannheim, Wien u. a. 1992.
Wissenschaftsverlag, Bibliographisches Institut Mannhein/Wien/Zürich 1985.
Gorski, Hans-Joachim und Müller-Philipp, Susanne: Leitfaden Arithmetik. Für Studierende der Lehrämter. Vieweg, Braunschweig/Wiesbaden 1999.
Henn, Hans-Wolfgang: Elementare Geometrie und Algebra. Vieweg, Wiesbaden 2003.
Kuba, Gerald und Götz, Stefan: Zahlen; erschienen in der Reihe "Fischer
Kompakt". S. Fischer Verlag, Frankfurt am Main 2004.
Leuders, Timo: Erlebnis Arithmetik zum aktiven Entdecken und selbstständigen Erarbeiten. Mathematik Primarstufe und Sekundarstufe I + II. Spektrum Akademischer Verlag, Heidelberg 2010.
Malle, Günther: Didaktische Probleme der elementaren Algebra. Vieweg,
Braunschweig u. a. 1993.
Scheid, Harald: Elemente der Arithmetik und Algebra. BI Wissenschaftsverlag, Mannheim, Wien u. a. 1992.
Association in the course directory
LA
Last modified: Sa 02.04.2022 00:24
secondary one. It will be continued to the end of school education changing
its name. Calculating with natural numbers is beside geometry the basic
issue of (school-)mathematics, it won't lose its meaning if the number
range is extended. These steps forward to "new" number sets are remarkable: they represent in a didactical sense real breaks, interruptions in the basic beliefs of the pupils, which could lead to misunderstandings and errors. Thus in this lesson we will focus on these number extensions. Mainly the fraction numbers are different to the numbers "before" (i. e. integers): there exist no antecessor and no successor of a fraction, for instance, and already the basic arithmetics (addition, multiplication and their inverse operations) are quite different to manage in comparision to their pendants in the natural numbers. And the real numbers? What's up with them? Unfortunately the answers to these questions which are given in the calculus lessons are often cloudy presented, not sufficient for a competent teaching afterwards. This lesson will try to close this gap.
Elementary Algebra is in addition to calculating with fractions one of the
most important fields which are content of mathematics education in
arithmetics at secondary level one. The ability of "calculating with
characters" is everywhere needed in mathematics indifferent at which level
it is done. Simultaneously mathematics loses its "innocence", this means
that the step from the concrete to the abstract point of view is done at
this time and it will never be retracted. Far from it one of the
characteristic features of mathematics gets so included in general
education.
This lecture will focus this essential step with all its difficulties which appear in mathematics education, in literature this phenomena is known as "pupil's mistakes in algebra". The cognition of term structures (and the consequent acting) is the key ability to successful manipulating algebraic formulas (besides a certain training but this is not a (primarily) specific point of this theme). In addition the use of computer algebra systems in mathematics education must be discussed. So the treated topics will also touch the contents in school mathematics at the secondary level two including leaving examinations.
The basis of all our considerations will be always the current Austrian curriculum in mathematics, of course.