*Warning! The directory is not yet complete and will be amended until the beginning of the term.*

# 250043 VO Selected topics in algebraic: Cohomology of groups (2009W)

## Labels

## Details

Language: German

### Examination dates

### Lecturers

### Classes (iCal) - next class is marked with N

Monday
05.10.
15:00 - 17:00
Seminarraum

Friday
09.10.
13:00 - 15:00
Seminarraum

Monday
12.10.
15:00 - 17:00
Seminarraum

Friday
16.10.
13:00 - 15:00
Seminarraum

Monday
19.10.
15:00 - 17:00
Seminarraum

Friday
23.10.
13:00 - 15:00
Seminarraum

Friday
30.10.
13:00 - 15:00
Seminarraum

Friday
06.11.
13:00 - 15:00
Seminarraum

Monday
09.11.
15:00 - 17:00
Seminarraum

Friday
13.11.
13:00 - 15:00
Seminarraum

Monday
16.11.
15:00 - 17:00
Seminarraum

Friday
20.11.
13:00 - 15:00
Seminarraum

Monday
23.11.
15:00 - 17:00
Seminarraum

Friday
27.11.
13:00 - 15:00
Seminarraum

Monday
30.11.
15:00 - 17:00
Seminarraum

Friday
04.12.
13:00 - 15:00
Seminarraum

Monday
07.12.
15:00 - 17:00
Seminarraum

Friday
11.12.
13:00 - 15:00
Seminarraum

Monday
14.12.
15:00 - 17:00
Seminarraum

Friday
18.12.
13:00 - 15:00
Seminarraum

Friday
08.01.
13:00 - 15:00
Seminarraum

Monday
11.01.
15:00 - 17:00
Seminarraum

Friday
15.01.
13:00 - 15:00
Seminarraum

Monday
18.01.
15:00 - 17:00
Seminarraum

Friday
22.01.
13:00 - 15:00
Seminarraum

Monday
25.01.
15:00 - 17:00
Seminarraum

Friday
29.01.
13:00 - 15:00
Seminarraum

## Information

### Aims, contents and method of the course

### Assessment and permitted materials

Written exam or oral exam after the end of the lecture.

### Minimum requirements and assessment criteria

familiarity with advanced results and methods of algebra and number theory

### Examination topics

varying

### Reading list

[SER] Serre, J.-P., Galois cohomology. Springer Verlag 1997.

[WEI] Weibel, C. A., An introduction to homological algebra. Cambridge University Press 1997.

[WES] Weiss, E., Cohomology of groups. Pure and Applied Mathematics, 34 Academic Press 1969.

[CAE] Cartan, E., Eilenberg, S.: Homological algebra. 1956.

[CHE] Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. 1948.

[KNA] Knapp, A. W.: Lie groups, Lie algebras, and cohomology. 1988.

[WEI] Weibel, C. A., An introduction to homological algebra. Cambridge University Press 1997.

[WES] Weiss, E., Cohomology of groups. Pure and Applied Mathematics, 34 Academic Press 1969.

[CAE] Cartan, E., Eilenberg, S.: Homological algebra. 1956.

[CHE] Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. 1948.

[KNA] Knapp, A. W.: Lie groups, Lie algebras, and cohomology. 1988.

## Association in the course directory

MALV

*Last modified: Mo 07.09.2020 15:40*

the algebraic methods the homology and cohomology of several algebraic systems

was defined and explored.

We start the lecture by giving an elementary definition of group cohomology,

along with group extensions and factor systems. We give interpretations of

the n-th cohomology group for small n.

Then we study profinite groups and their cohomology, with coefficients

being discrete modules. These groups arise as Galois groups of

(possibly infinite) field extensions. Their cohomology is named Galois

cohomology, and is very important for number theory.

Finally we plan a short account on the functorial definition of cohomology.