Universität Wien

250044 VO Introduction to topology (2011S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 02.03. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 09.03. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 16.03. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 23.03. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 30.03. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 06.04. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 13.04. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 04.05. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 11.05. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 18.05. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 25.05. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 01.06. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 08.06. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 15.06. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 22.06. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 29.06. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum

Information

Aims, contents and method of the course

In this lecture (forming a non-separable unit together with the corresponding tutorials 250045), the basic notions of set-theoretic topology will be presented. We will build upon the relevant pre-knowledge from the lectures on analysis of one and several (real) variables where convergence, continuity, open and closed sets as well as compactness have already played a prominent rôle. The general frame for notions like these, being the basis of indispensable tools in nearly every field of mathematics, is provided by (metric and) topological spaces. The content of the lecture is centered around the core notions TC^3 (sometimes also TC^4: topology; [convergence,] continuity, compactness, connectedness). Of course, also metric spaces will receive due attention, as a source of examples for the general case of topological spaces and, moreover, with respect to their specific features.

Assessment and permitted materials

oral final exam after the course

Minimum requirements and assessment criteria

cf. content

Examination topics

as to content: all mathematical techniques;
as to organizing the process of teaching and learning: see pages 16-18 of
http://www.univie.ac.at/mtbl02/2006_2007/2006_2007_157.pdf

Reading list

J. Cigler, H.C.Reichel: Topologie - Eine Grundvorlesung, BI Hochschultaschenbücher 121, Bibliographisches Institut, Mannheim, 1987.

K. Jänich: Topologie, Springer-Lehrbuch, Springer-Verlag, Berlin, 1994. x+239 pp. http://www.univie.ac.at/NuHAG/FEICOURS/TOPOLOG/jaenich.htm

B. von Querenburg: Mengentheoretische Topologie, Hochschultext. Springer-Verlag, Berlin-New
York, 1979. x+209 pp. http://www.univie.ac.at/NuHAG/FEICOURS/TOPOLOG/queren3.htm

A famous classic reference:

R. Engelking, General topology, Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989. viii+529 pp.

Association in the course directory

HAN

Last modified: Sa 02.04.2022 00:24