250044 VO Introduction to topology (2011S)
Labels
Details
Language: German
Examination dates
- Wednesday 29.06.2011
- Thursday 07.07.2011
- Friday 08.07.2011
- Wednesday 13.07.2011
- Friday 29.07.2011
- Tuesday 02.08.2011
- Thursday 04.08.2011
- Tuesday 09.08.2011
- Wednesday 10.08.2011
- Friday 19.08.2011
- Monday 22.08.2011
- Tuesday 27.09.2011
- Friday 30.09.2011
- Monday 03.10.2011
- Monday 10.10.2011
- Wednesday 12.10.2011
- Monday 24.10.2011
- Monday 31.10.2011
- Wednesday 02.11.2011
- Tuesday 14.02.2012
- Thursday 16.02.2012
- Friday 24.02.2012
- Thursday 29.03.2012
- Thursday 21.06.2012
- Wednesday 11.07.2012
- Wednesday 25.07.2012
- Tuesday 31.07.2012
- Tuesday 14.08.2012
- Thursday 23.08.2012
- Wednesday 29.08.2012
- Thursday 13.12.2012
- Monday 18.03.2013
- Thursday 04.07.2013
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 02.03. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 09.03. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 16.03. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 23.03. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 30.03. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 06.04. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 13.04. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 04.05. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 11.05. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 18.05. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 25.05. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 01.06. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 08.06. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 15.06. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 22.06. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Wednesday 29.06. 11:15 - 12:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Information
Aims, contents and method of the course
In this lecture (forming a non-separable unit together with the corresponding tutorials 250045), the basic notions of set-theoretic topology will be presented. We will build upon the relevant pre-knowledge from the lectures on analysis of one and several (real) variables where convergence, continuity, open and closed sets as well as compactness have already played a prominent rôle. The general frame for notions like these, being the basis of indispensable tools in nearly every field of mathematics, is provided by (metric and) topological spaces. The content of the lecture is centered around the core notions TC^3 (sometimes also TC^4: topology; [convergence,] continuity, compactness, connectedness). Of course, also metric spaces will receive due attention, as a source of examples for the general case of topological spaces and, moreover, with respect to their specific features.
Assessment and permitted materials
oral final exam after the course
Minimum requirements and assessment criteria
cf. content
Examination topics
as to content: all mathematical techniques;
as to organizing the process of teaching and learning: see pages 16-18 of
http://www.univie.ac.at/mtbl02/2006_2007/2006_2007_157.pdf
as to organizing the process of teaching and learning: see pages 16-18 of
http://www.univie.ac.at/mtbl02/2006_2007/2006_2007_157.pdf
Reading list
J. Cigler, H.C.Reichel: Topologie - Eine Grundvorlesung, BI Hochschultaschenbücher 121, Bibliographisches Institut, Mannheim, 1987.K. Jänich: Topologie, Springer-Lehrbuch, Springer-Verlag, Berlin, 1994. x+239 pp. http://www.univie.ac.at/NuHAG/FEICOURS/TOPOLOG/jaenich.htmB. von Querenburg: Mengentheoretische Topologie, Hochschultext. Springer-Verlag, Berlin-New
York, 1979. x+209 pp. http://www.univie.ac.at/NuHAG/FEICOURS/TOPOLOG/queren3.htmA famous classic reference:R. Engelking, General topology, Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989. viii+529 pp.
York, 1979. x+209 pp. http://www.univie.ac.at/NuHAG/FEICOURS/TOPOLOG/queren3.htmA famous classic reference:R. Engelking, General topology, Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989. viii+529 pp.
Association in the course directory
HAN
Last modified: Sa 02.04.2022 00:24