Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform.

Further information about on-site teaching and access tests from 21 April 2021 onwards can be found at https://studieren.univie.ac.at/en/info.

250047 VO Frame Theory (2019W)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Thursday 03.10. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday 07.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 10.10. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday 14.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 17.10. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday 21.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 24.10. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday 28.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 31.10. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday 04.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 07.11. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday 11.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 14.11. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday 18.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 21.11. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday 25.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 28.11. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday 02.12. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 05.12. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday 09.12. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 12.12. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday 16.12. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 09.01. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday 13.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 16.01. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday 20.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 23.01. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday 27.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 30.01. 16:45 - 17:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Frame theory is concerned with the study of stable, potentially overcomplete spanning sets in a Hilbert space. Its starting point is a generalization of the principle of an orthonormal basis resulting in the definition of a frame. Similar to orthonormal bases (ONBs) every function can be
(i) recovered from its frame coefficients, i.e. the inner products with respect to the frame elements and
(ii) expanded into a linear combination of the frame elements.
Frames have a rich structure despite being much less restrictive than ONBs, rendering them attractive for a wide number of applications. In addition to being an active field of research, posing interesting research questions of its own, frame theory has applications in other fields, like signal processing and physics.

Students of this course will gain understanding of the basic properties of frames and Riesz bases in comparison to ONBs, both in a linear algebra and functional anaylsis context. Particular The implementation of frame-related algorithms will be considered and applications in acoustics, signal processing and quantum mechanics are presented as motivation.

For a short introduction see
https://en.wikipedia.org/wiki/Frame_(linear_algebra)

This will be a standard frontal course, using mostly the blackboard and ocaasionally the beamer.

Assessment and permitted materials

Written exam

(In exceptional cases an oral exam is possible.)

Minimum requirements and assessment criteria

A basic understanding of concepts from functional analysis and linear algebra.

For a successful conclusion of this course, students must demonstrate knowledge of the basic concepts and theorems, as well as an understanding of the main proofs and applications presented.

Examination topics

Everything that is covered in the course, i.e.
1.) Spanning sets in finite dimensional vector spaces
2.) Bessel sequences
3.) Riesz bases
4.) Frames
5.) Particular frame systems: Gabor, Wavelets, Shift-invariant Systems

Reading list

The course will mostly stick to
Ole Christensen, An Introduction to Frames and Riesz Bases

Association in the course directory

MANV, MAMV

Last modified: Mo 07.09.2020 15:21