250047 VO Frame Theory (2019W)
Labels
Registration/Deregistration
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
Thursday
03.10.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday
07.10.
09:45 - 11:15
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
10.10.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday
14.10.
09:45 - 11:15
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
17.10.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday
21.10.
09:45 - 11:15
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
24.10.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday
28.10.
09:45 - 11:15
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
31.10.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday
04.11.
09:45 - 11:15
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
07.11.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday
11.11.
09:45 - 11:15
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
14.11.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday
18.11.
09:45 - 11:15
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
21.11.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday
25.11.
09:45 - 11:15
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
28.11.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday
02.12.
09:45 - 11:15
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
05.12.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday
09.12.
09:45 - 11:15
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
12.12.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday
16.12.
09:45 - 11:15
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
09.01.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday
13.01.
09:45 - 11:15
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
16.01.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday
20.01.
09:45 - 11:15
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
23.01.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Monday
27.01.
09:45 - 11:15
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
30.01.
16:45 - 17:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam(In exceptional cases an oral exam is possible.)
Minimum requirements and assessment criteria
A basic understanding of concepts from functional analysis and linear algebra.For a successful conclusion of this course, students must demonstrate knowledge of the basic concepts and theorems, as well as an understanding of the main proofs and applications presented.
Examination topics
Everything that is covered in the course, i.e.
1.) Spanning sets in finite dimensional vector spaces
2.) Bessel sequences
3.) Riesz bases
4.) Frames
5.) Particular frame systems: Gabor, Wavelets, Shift-invariant Systems
1.) Spanning sets in finite dimensional vector spaces
2.) Bessel sequences
3.) Riesz bases
4.) Frames
5.) Particular frame systems: Gabor, Wavelets, Shift-invariant Systems
Reading list
The course will mostly stick to
Ole Christensen, An Introduction to Frames and Riesz Bases
Ole Christensen, An Introduction to Frames and Riesz Bases
Association in the course directory
MANV, MAMV
Last modified: Mo 07.09.2020 15:21
(i) recovered from its frame coefficients, i.e. the inner products with respect to the frame elements and
(ii) expanded into a linear combination of the frame elements.
Frames have a rich structure despite being much less restrictive than ONBs, rendering them attractive for a wide number of applications. In addition to being an active field of research, posing interesting research questions of its own, frame theory has applications in other fields, like signal processing and physics.Students of this course will gain understanding of the basic properties of frames and Riesz bases in comparison to ONBs, both in a linear algebra and functional anaylsis context. Particular The implementation of frame-related algorithms will be considered and applications in acoustics, signal processing and quantum mechanics are presented as motivation.For a short introduction see
https://en.wikipedia.org/wiki/Frame_(linear_algebra)This will be a standard frontal course, using mostly the blackboard and ocaasionally the beamer.