Universität Wien

250047 VU Applied machine learning (2022W)

7.00 ECTS (4.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work
ON-SITE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 50 participants
Language: German

Lecturers

Classes (iCal) - next class is marked with N

Vorbesprechung am 3. Oktober 16:45.

  • Monday 03.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 05.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 10.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 12.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 17.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 19.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 24.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 31.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 07.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 09.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 14.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 16.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 21.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 23.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 28.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 30.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 05.12. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 07.12. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.12. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 14.12. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 09.01. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 11.01. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 16.01. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 18.01. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 23.01. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 25.01. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 30.01. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Machine learning plays an essential role almost everywhere in technology and research these days. The creation of data-driven models, which can be used efficiently as proxy and/or prediction models for new data, requires "know-how" in the mathematical basics as well as experience in dealing with the appropriate software packages.
The VU aims to "reconcile" theoretical and application-relevant aspects. In addition to the particularly practically relevant basics such as data analysis, model selection, validation, over- and underfitting, "feature selection", we will discuss "classical methods" such as non-linear model reduction (PCA, MDS, kernel methods, etc.), classification (logistic regression, random forests , SVMs, etc), regression (kernel rigde regression, lasso, etc), clustering, ensemble learning, as well as the basics of the current Deep Neural Networks (DNN), especially new advanced methodologies like autoencoders/-decoders, convolutional Neural Networks and " Physics-Informed Neural Networks (PINN)".

Using practical exercises, the handling of this is taught "hands-on" via Python, scikit-learn and keras/tensor flow, where we use the no-setup environment Kaggle with free GPU access. The VU will also deal with current research topics and applications in physics and materials research.

Structure:
The VU "Applied Machine Learning" combines (i) a "theory part" where mathematical and numerical basics of machine learning are presented, (ii) practical exercises that accompany the first part, and (iii) a "group work" where a small application problem in groups of about 2-6 people is considered and presented.

Assessment and permitted materials

The grade results from the elaboration/tests and the team project.

Minimum requirements and assessment criteria

The course imparts basic knowledge about "Machine Learning" using lectures, exercises and a small team project.

Examination topics

Moodle test + presentation of team project in the end of semester

Reading list

Lecture notes.

Further literature:
Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition. O'Reilly Media, 2019.
Forsyth, David, Applied Machine Learning. Springer International Publishing, 2019.
Shalev-Shwartz, Shai, and Shai Ben-David, Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.

Association in the course directory

ZWM

Last modified: Th 29.09.2022 16:49