Warning! The directory is not yet complete and will be amended until the beginning of the term.
250048 VO Numerics of Partial Differential Equations (2021W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
max. 25 participants
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
According to the regulations communicated by the Rectorate on 03.01.2022, the course will continue to take place in digital format on the Moodle platform. Possible changes will be communicated also by email.
Friday
01.10.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday
05.10.
08:00 - 09:30
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
08.10.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday
12.10.
08:00 - 09:30
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
15.10.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday
19.10.
08:00 - 09:30
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
22.10.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
29.10.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
05.11.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday
09.11.
08:00 - 09:30
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
12.11.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday
16.11.
08:00 - 09:30
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
19.11.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday
23.11.
08:00 - 09:30
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
26.11.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday
30.11.
08:00 - 09:30
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
03.12.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday
07.12.
08:00 - 09:30
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
10.12.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday
14.12.
08:00 - 09:30
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
17.12.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
07.01.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday
11.01.
08:00 - 09:30
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
14.01.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday
18.01.
08:00 - 09:30
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
21.01.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday
25.01.
08:00 - 09:30
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Friday
28.01.
08:00 - 09:30
Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
The course mainly focuses on Finite Element Methods for the numerical approximation of Partial Differential Equations. Three aspects of the finite element method will be considered: i) theoretical foundations, ii) examples of applications to the numerical approximation of partial differential equations arising in different application domains, iii) implementation details. After revising some basic concepts in functional analysis, finite element methods for the Poisson problem will be introduced; their stability and error analysis, as well as the basic tools for their implementation, will be presented. Then, finite element approximations of the heat equation, of the Helmholtz problem and of advection-dominated advection-diffusion problems will be considered, discussing the respective specific issues. Implementation details will be discussed. The last part of this course, depending on the students' interests, will concern either other applications (fluid mechanics, electromagnetics, elasticity), or non standard finite element methods (as discontinuous Galerkin methods).
Assessment and permitted materials
Final oral exam
Minimum requirements and assessment criteria
Presentation of theoretical and numerical aspects of Finite Element Methods for the numerical approximation of Partial Differential Equations arising from different applications.
Examination topics
Content of the lectures.
Reading list
Suggested reading: A. Quarteroni, Numerical Models for Differential Problems, Springer, 2014. Additional material and course notes will be distributed during the course.
Association in the course directory
MAMV; MANV
Last modified: Fr 25.11.2022 12:49