Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform.

Further information about on-site teaching and access tests can be found at https://studieren.univie.ac.at/en/info.

Warning! The directory is not yet complete and will be amended until the beginning of the term.

250048 VO Numerics of Partial Differential Equations (2021W)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik
ON-SITE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

The course is announced on-site. On the other hand, if the room capacity is exceeded, other arrangements will be made.

Tuesday 05.10. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 08.10. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 12.10. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 15.10. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 19.10. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 22.10. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 29.10. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 05.11. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 09.11. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 12.11. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 16.11. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 19.11. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 23.11. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 26.11. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 30.11. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 03.12. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 07.12. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 10.12. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 14.12. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 17.12. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 07.01. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 11.01. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 14.01. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 18.01. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 21.01. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 25.01. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Friday 28.01. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The course mainly focuses on Finite Element Methods for the numerical approximation of Partial Differential Equations. Three aspects of the finite element method will be considered: i) theoretical foundations, ii) examples of applications to the numerical approximation of partial differential equations arising in different application domains, iii) implementation details. After revising some basic concepts in functional analysis, finite element methods for the Poisson problem will be introduced; their stability and error analysis, as well as the basic tools for their implementation, will be presented. Then, finite element approximations of the heat equation, of the Helmholtz problem and of advection-dominated advection-diffusion problems will be considered, discussing the respective specific issues. Implementation details will be discussed. The last part of this course, depending on the students' interests, will concern either other applications (fluid mechanics, electromagnetics, elasticity), or non standard finite element methods (as discontinuous Galerkin methods).

Assessment and permitted materials

Final oral exam

Minimum requirements and assessment criteria

Presentation of theoretical and numerical aspects of Finite Element Methods for the numerical approximation of Partial Differential Equations arising from different applications.

Examination topics

Content of the lectures.

Reading list

Suggested reading: A. Quarteroni, Numerical Models for Differential Problems, Springer, 2014. Additional material and course notes will be distributed during the course.

Association in the course directory

MAMV; MANV

Last modified: Fr 17.09.2021 07:28