Universität Wien

250048 VO Numerics of Partial Differential Equations (2021W)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik
ON-SITE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

According to the regulations communicated by the Rectorate on 03.01.2022, the course will continue to take place in digital format on the Moodle platform. Possible changes will be communicated also by email.

  • Friday 01.10. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 05.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 08.10. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 12.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 15.10. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 19.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 22.10. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 29.10. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 05.11. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 09.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 12.11. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 16.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 19.11. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 23.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 26.11. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 30.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 03.12. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 07.12. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 10.12. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 14.12. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 17.12. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 07.01. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 11.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 14.01. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 18.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 21.01. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 25.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 28.01. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Aims, contents and method of the course

The course mainly focuses on Finite Element Methods for the numerical approximation of Partial Differential Equations. Three aspects of the finite element method will be considered: i) theoretical foundations, ii) examples of applications to the numerical approximation of partial differential equations arising in different application domains, iii) implementation details. After revising some basic concepts in functional analysis, finite element methods for the Poisson problem will be introduced; their stability and error analysis, as well as the basic tools for their implementation, will be presented. Then, finite element approximations of the heat equation, of the Helmholtz problem and of advection-dominated advection-diffusion problems will be considered, discussing the respective specific issues. Implementation details will be discussed. The last part of this course, depending on the students' interests, will concern either other applications (fluid mechanics, electromagnetics, elasticity), or non standard finite element methods (as discontinuous Galerkin methods).

Assessment and permitted materials

Final oral exam

Minimum requirements and assessment criteria

Presentation of theoretical and numerical aspects of Finite Element Methods for the numerical approximation of Partial Differential Equations arising from different applications.

Examination topics

Content of the lectures.

Reading list

Suggested reading: A. Quarteroni, Numerical Models for Differential Problems, Springer, 2014. Additional material and course notes will be distributed during the course.

Association in the course directory

MAMV; MANV

Last modified: Fr 25.11.2022 12:49