250051 PS Introductory seminar on algebraic number theory (2011W)
Continuous assessment of course work
Labels
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Monday 10.10. 14:00 - 15:00 Seminarraum
- Monday 17.10. 14:00 - 15:00 Seminarraum
- Monday 24.10. 14:00 - 15:00 Seminarraum
- Monday 31.10. 14:00 - 15:00 Seminarraum
- Monday 07.11. 14:00 - 15:00 Seminarraum
- Monday 14.11. 14:00 - 15:00 Seminarraum
- Monday 21.11. 14:00 - 15:00 Seminarraum
- Monday 28.11. 14:00 - 15:00 Seminarraum
- Monday 05.12. 14:00 - 15:00 Seminarraum
- Monday 12.12. 14:00 - 15:00 Seminarraum
- Monday 09.01. 14:00 - 15:00 Seminarraum
- Monday 16.01. 14:00 - 15:00 Seminarraum
- Monday 23.01. 14:00 - 15:00 Seminarraum
- Monday 30.01. 14:00 - 15:00 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
The grade is determined by the number of exercises solved and the number and quality of presentations of these solutions.
Minimum requirements and assessment criteria
The aim is to transform the students' understanding of basic principles into working knowledge.
Examination topics
We will discuss solutions of exercises prepared by the students.
Reading list
S. Alaca, K.S. Williams, Introductory Algebraic Number Theory
D.A. Marcus, Number Fields
W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers
J. Neukirch, Algebraische Zahlentheorie
I. Stewart, D. Tall, Algebraic Number Theory and Fermat's Last Theorem
H.P.F. Swinnerton-Dyer, A Brief Guide to Algebraic Number Theory
D.A. Marcus, Number Fields
W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers
J. Neukirch, Algebraische Zahlentheorie
I. Stewart, D. Tall, Algebraic Number Theory and Fermat's Last Theorem
H.P.F. Swinnerton-Dyer, A Brief Guide to Algebraic Number Theory
Association in the course directory
MALS
Last modified: Mo 07.09.2020 15:40
http://www.mat.univie.ac.at/~baxa/ws1112.html