250053 SE Seminar (Number theory) (2010S)
Continuous assessment of course work
Labels
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 03.03. 09:00 - 11:00 Seminarraum
- Wednesday 10.03. 09:00 - 11:00 Seminarraum
- Wednesday 17.03. 09:00 - 11:00 Seminarraum
- Wednesday 24.03. 09:00 - 11:00 Seminarraum
- Wednesday 14.04. 09:00 - 11:00 Seminarraum
- Wednesday 21.04. 09:00 - 11:00 Seminarraum
- Wednesday 28.04. 09:00 - 11:00 Seminarraum
- Wednesday 05.05. 09:00 - 11:00 Seminarraum
- Wednesday 12.05. 09:00 - 11:00 Seminarraum
- Wednesday 19.05. 09:00 - 11:00 Seminarraum
- Wednesday 26.05. 09:00 - 11:00 Seminarraum
- Wednesday 02.06. 09:00 - 11:00 Seminarraum
- Wednesday 09.06. 09:00 - 11:00 Seminarraum
- Wednesday 16.06. 09:00 - 11:00 Seminarraum
- Wednesday 23.06. 09:00 - 11:00 Seminarraum
- Wednesday 30.06. 09:00 - 11:00 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
The grade is determined by the quality of the student's talk and his or her participation in the discussion of others' talks.
Minimum requirements and assessment criteria
Our aim is a thorough survey of the solution of Hilbert's tenth problem and the methods used to this end. In addition, we want to give an introduction to interesting developments in recent years.
Examination topics
Participants will present the material in individual talks. (Each participant will be assigned sections from the papers we study and will be given support when preparing the presentation.) A preliminary schedule of talks will be agreed on at an introductory meeting on March 3, 2010.
Reading list
M. Davis, Hilbert's tenth problem in unsolvable, Amer. Math. Monthly 80 (1973), 233-269.
M. Davis, On the number of solutions of Diophantine equations, Proc. Amer. Math. Soc. 35 (1972), 552-554.
J. P. Jones, D. Sato, H. Wada, D. Wiens, Diophantine representation of the set of prime numbers, Amer. Math. Monthly 83 (1976), 449-464.
Yu. V. Matiyasevich, Hilbert's Tenth Problem, MIT Press, Cambridge, MA, 1993.
B. Poonen, Undecidability in number theory, Notices Amer. Math. Soc. 55 (2008), 344-350.
A. Shlapentokh, Hilbert's Tenth Problem, Cambridge University Press, Cambridge, 2007.
M. Davis, On the number of solutions of Diophantine equations, Proc. Amer. Math. Soc. 35 (1972), 552-554.
J. P. Jones, D. Sato, H. Wada, D. Wiens, Diophantine representation of the set of prime numbers, Amer. Math. Monthly 83 (1976), 449-464.
Yu. V. Matiyasevich, Hilbert's Tenth Problem, MIT Press, Cambridge, MA, 1993.
B. Poonen, Undecidability in number theory, Notices Amer. Math. Soc. 55 (2008), 344-350.
A. Shlapentokh, Hilbert's Tenth Problem, Cambridge University Press, Cambridge, 2007.
Association in the course directory
MALS
Last modified: Mo 07.09.2020 15:40
http://www.mat.univie.ac.at/~baxa/ss2010se.html