250053 SE Seminar (Combinatorics) (2011W)
Continuous assessment of course work
Labels
Details
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 06.10. 13:00 - 15:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 13.10. 13:00 - 15:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 20.10. 13:00 - 15:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 27.10. 13:00 - 15:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 03.11. 13:00 - 15:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 10.11. 13:00 - 15:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 17.11. 13:00 - 15:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 24.11. 13:00 - 15:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 01.12. 13:00 - 15:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 15.12. 13:00 - 15:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 12.01. 13:00 - 15:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 19.01. 13:00 - 15:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 26.01. 13:00 - 15:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
Information
Aims, contents and method of the course
In this seminar, we shall study recent papers in the field of Enumerative and Algebraic Combinatorics. One topic area will concern so-called (generalised) Tamari lattices. We shall read the articles "The number of intervals in the m-Tamari lattices" (http://arxiv.org/abs/1106.1498) and "Tamari lattices and parking functions: proof of a conjecture of F. Bergeron" (http://arxiv.org/abs/1109.2398) by Mireille Bousquet-Melou, Guillaume Chapuy and Louis-Francois Preville Ratelle. Another topic area will be `defined' by the article "Maximal fillings of moon polyominoes, simplicial complexes, and Schubert polynomials" (http://arxiv.org/abs/1009.4690) by Luis Serrano and Christian Stump, which features (so-called) "pipe dreams", Schubert polynomials, and simplicial complexes.I am also open to other suggestions.
Assessment and permitted materials
Active participation in the discussions and a seminar talk.
Minimum requirements and assessment criteria
In this seminar, we shall study recent papers in the field of Enumerative and Algebraic Combinatorics. One topic area will concern so-called (generalised) Tamari lattices. We shall read the articles "The number of intervals in the m-Tamari lattices" (http://arxiv.org/abs/1106.1498) and "Tamari lattices and parking functions: proof of a conjecture of F. Bergeron" (http://arxiv.org/abs/1109.2398) by Mireille Bousquet-Melou, Guillaume Chapuy and Louis-Francois Preville Ratelle. Another topic area will be `defined' by the article "Maximal fillings of moon polyominoes, simplicial complexes, and Schubert polynomials" (http://arxiv.org/abs/1009.4690) by Luis Serrano and Christian Stump, which features (so-called) "pipe dreams", Schubert polynomials, and simplicial complexes.I am also open to other suggestions.
Examination topics
In this seminar, we shall study recent papers in the field of Enumerative and Algebraic Combinatorics. One topic area will concern so-called (generalised) Tamari lattices. We shall read the articles "The number of intervals in the m-Tamari lattices" (http://arxiv.org/abs/1106.1498) and "Tamari lattices and parking functions: proof of a conjecture of F. Bergeron" (http://arxiv.org/abs/1109.2398) by Mireille Bousquet-Melou, Guillaume Chapuy and Louis-Francois Preville Ratelle. Another topic area will be `defined' by the article "Maximal fillings of moon polyominoes, simplicial complexes, and Schubert polynomials" (http://arxiv.org/abs/1009.4690) by Luis Serrano and Christian Stump, which features (so-called) "pipe dreams", Schubert polynomials, and simplicial complexes.I am also open to other suggestions.
Reading list
Association in the course directory
MALS
Last modified: Tu 02.07.2024 00:17