250054 VO Commutative Algebra (2012S)
Labels
Details
Language: English
Examination dates
- Sunday 08.07.2012
- Friday 03.08.2012
- Monday 13.08.2012
- Monday 10.09.2012
- Wednesday 19.09.2012
- Wednesday 10.10.2012
- Wednesday 31.07.2013
- Friday 15.11.2013
- Monday 09.12.2013
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 07.03. 14:00 - 16:00 Seminarraum
- Thursday 08.03. 14:00 - 16:00 Seminarraum
- Wednesday 14.03. 14:00 - 16:00 Seminarraum
- Thursday 15.03. 14:00 - 16:00 Seminarraum
- Wednesday 21.03. 14:00 - 16:00 Seminarraum
- Thursday 22.03. 14:00 - 16:00 Seminarraum
- Wednesday 28.03. 14:00 - 16:00 Seminarraum
- Thursday 29.03. 14:00 - 16:00 Seminarraum
- Wednesday 18.04. 14:00 - 16:00 Seminarraum
- Thursday 19.04. 14:00 - 16:00 Seminarraum
- Wednesday 25.04. 14:00 - 16:00 Seminarraum
- Thursday 26.04. 14:00 - 16:00 Seminarraum
- Wednesday 02.05. 14:00 - 16:00 Seminarraum
- Thursday 03.05. 14:00 - 16:00 Seminarraum
- Wednesday 09.05. 14:00 - 16:00 Seminarraum
- Thursday 10.05. 14:00 - 16:00 Seminarraum
- Wednesday 16.05. 14:00 - 16:00 Seminarraum
- Wednesday 23.05. 14:00 - 16:00 Seminarraum
- Thursday 24.05. 14:00 - 16:00 Seminarraum
- Wednesday 30.05. 14:00 - 16:00 Seminarraum
- Thursday 31.05. 14:00 - 16:00 Seminarraum
- Wednesday 06.06. 14:00 - 16:00 Seminarraum
- Wednesday 13.06. 14:00 - 16:00 Seminarraum
- Thursday 14.06. 14:00 - 16:00 Seminarraum
- Wednesday 20.06. 14:00 - 16:00 Seminarraum
- Thursday 21.06. 14:00 - 16:00 Seminarraum
- Wednesday 27.06. 14:00 - 16:00 Seminarraum
- Thursday 28.06. 14:00 - 16:00 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam or oral exam after the end of the lecture.
Minimum requirements and assessment criteria
Examination topics
Reading list
[AM] M.F. Atiyah, I.G. Macdonald, Introduction to commutative Algebra, 1969.
[BOU] N. Bourbaki, Commutative Algebra, 1989.
[EIS] D. Eisenbud, Commutative Algebra, 1995.
[GRP] G.-M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra, 2002.
[KEM] G. Kemper, A course in commutative algebra, 2011.
[MAT] H. Matsumura: Commutative Ring Theory, 1986.
[SAZ] P. Samuel, O. Zariski: Commutative Algebra, 1975.
[SHA] R. Y. Sharp: Steps in commutative algebra, 2000.
[BOU] N. Bourbaki, Commutative Algebra, 1989.
[EIS] D. Eisenbud, Commutative Algebra, 1995.
[GRP] G.-M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra, 2002.
[KEM] G. Kemper, A course in commutative algebra, 2011.
[MAT] H. Matsumura: Commutative Ring Theory, 1986.
[SAZ] P. Samuel, O. Zariski: Commutative Algebra, 1975.
[SHA] R. Y. Sharp: Steps in commutative algebra, 2000.
Association in the course directory
MALV
Last modified: Mo 07.09.2020 15:40
over such rings. It is among other things a fundamental basis for algebraic
geometry, invariant theory and algebraic number theory. Indeed, two concrete
classes of commutative rings related to these fields marked the beginning of
commutative algebra: rings of integers of algebraic number fields, and polynomial
rings. We want to study also Gröbner bases, module theory, Noetherian rings
and dimension theory, localization, integral extensions, Dedekind rings and
discrete valuation rings.