Universität Wien

250054 VO Commutative Algebra (2012S)

7.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 07.03. 14:00 - 16:00 Seminarraum
  • Thursday 08.03. 14:00 - 16:00 Seminarraum
  • Wednesday 14.03. 14:00 - 16:00 Seminarraum
  • Thursday 15.03. 14:00 - 16:00 Seminarraum
  • Wednesday 21.03. 14:00 - 16:00 Seminarraum
  • Thursday 22.03. 14:00 - 16:00 Seminarraum
  • Wednesday 28.03. 14:00 - 16:00 Seminarraum
  • Thursday 29.03. 14:00 - 16:00 Seminarraum
  • Wednesday 18.04. 14:00 - 16:00 Seminarraum
  • Thursday 19.04. 14:00 - 16:00 Seminarraum
  • Wednesday 25.04. 14:00 - 16:00 Seminarraum
  • Thursday 26.04. 14:00 - 16:00 Seminarraum
  • Wednesday 02.05. 14:00 - 16:00 Seminarraum
  • Thursday 03.05. 14:00 - 16:00 Seminarraum
  • Wednesday 09.05. 14:00 - 16:00 Seminarraum
  • Thursday 10.05. 14:00 - 16:00 Seminarraum
  • Wednesday 16.05. 14:00 - 16:00 Seminarraum
  • Wednesday 23.05. 14:00 - 16:00 Seminarraum
  • Thursday 24.05. 14:00 - 16:00 Seminarraum
  • Wednesday 30.05. 14:00 - 16:00 Seminarraum
  • Thursday 31.05. 14:00 - 16:00 Seminarraum
  • Wednesday 06.06. 14:00 - 16:00 Seminarraum
  • Wednesday 13.06. 14:00 - 16:00 Seminarraum
  • Thursday 14.06. 14:00 - 16:00 Seminarraum
  • Wednesday 20.06. 14:00 - 16:00 Seminarraum
  • Thursday 21.06. 14:00 - 16:00 Seminarraum
  • Wednesday 27.06. 14:00 - 16:00 Seminarraum
  • Thursday 28.06. 14:00 - 16:00 Seminarraum

Information

Aims, contents and method of the course

Commutative algebra studies commutative rings, their ideals and modules
over such rings. It is among other things a fundamental basis for algebraic
geometry, invariant theory and algebraic number theory. Indeed, two concrete
classes of commutative rings related to these fields marked the beginning of
commutative algebra: rings of integers of algebraic number fields, and polynomial
rings. We want to study also Gröbner bases, module theory, Noetherian rings
and dimension theory, localization, integral extensions, Dedekind rings and
discrete valuation rings.

Assessment and permitted materials

Written exam or oral exam after the end of the lecture.

Minimum requirements and assessment criteria

Examination topics

Reading list

[AM] M.F. Atiyah, I.G. Macdonald, Introduction to commutative Algebra, 1969.
[BOU] N. Bourbaki, Commutative Algebra, 1989.
[EIS] D. Eisenbud, Commutative Algebra, 1995.
[GRP] G.-M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra, 2002.
[KEM] G. Kemper, A course in commutative algebra, 2011.
[MAT] H. Matsumura: Commutative Ring Theory, 1986.
[SAZ] P. Samuel, O. Zariski: Commutative Algebra, 1975.
[SHA] R. Y. Sharp: Steps in commutative algebra, 2000.

Association in the course directory

MALV

Last modified: Mo 07.09.2020 15:40