250056 VO School mathematics 3 (Applied mathematics) (2015S)
Labels
It is strongly recommended to pass the lecture "Angewandte Mathematik für LAK" before participating in this course.
Details
Language: German
Examination dates
- Monday 29.06.2015
- Thursday 02.07.2015
- Friday 03.07.2015
- Friday 10.07.2015
- Tuesday 28.07.2015
- Thursday 03.09.2015
- Monday 21.09.2015
- Monday 28.09.2015
- Friday 02.10.2015
- Friday 02.10.2015
- Thursday 15.10.2015
- Thursday 22.10.2015
- Thursday 05.11.2015
- Tuesday 17.11.2015
- Friday 20.11.2015
- Monday 30.11.2015
- Wednesday 09.12.2015
- Tuesday 15.12.2015
- Wednesday 16.12.2015
- Monday 11.01.2016
- Tuesday 16.02.2016
- Tuesday 26.04.2016
- Tuesday 03.05.2016
- Wednesday 18.05.2016
- Tuesday 14.06.2016
- Wednesday 22.06.2016
- Tuesday 28.06.2016
Lecturers
Classes (iCal) - next class is marked with N
- Friday 06.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 13.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 20.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 27.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 17.04. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 24.04. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 08.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 15.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 22.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 29.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 05.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 12.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 19.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 26.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral examinations.
Minimum requirements and assessment criteria
Preparation for a competently planning of teaching units on applied topics of school mathematics at secondary level.
Examination topics
Regular lecture with the possibility to discuss with the lecturer.
Reading list
Maaß, J. and O'Donoghue, J. (Eds.): Real-World Problems for Secondary School Mathematics Students. Case Studies. Sense Publishers, Rotterdam 2011.
Association in the course directory
LAD
Last modified: Mo 07.09.2020 15:40
biomathematics to the classical approaches in analysis and algebra) and all levels. The central theme in this variety of contents and complexities is the so called modelling cycle: first a real situation must be simplified and structured to get a real model. Then via mathematizing this model will be translated into the language of mathematics, a mathematical model is formed. Now it could be possible to use mathematical methods to find solutions. These solutions have to be interpreted in relation to the real model. Last but not least a validation with respect to the original situation must happen. If it is not satisfying, the cycle will be passed once again with (slightly) changed parameters, conditions etc. In this course many different school relevant examples will be presented to demonstrate, analyse, discuss and reflect this process. Furthermore, some aspects of numerical mathematics, which play a role in school, should complete this lecture.