Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250057 VO Homological Algebra (2011W)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 06.10. 15:00 - 17:00 Seminarraum
  • Friday 07.10. 13:00 - 15:00 Seminarraum
  • Thursday 13.10. 15:00 - 17:00 Seminarraum
  • Friday 14.10. 13:00 - 15:00 Seminarraum
  • Thursday 20.10. 15:00 - 17:00 Seminarraum
  • Friday 21.10. 13:00 - 15:00 Seminarraum
  • Thursday 27.10. 15:00 - 17:00 Seminarraum
  • Friday 28.10. 13:00 - 15:00 Seminarraum
  • Thursday 03.11. 15:00 - 17:00 Seminarraum
  • Friday 04.11. 13:00 - 15:00 Seminarraum
  • Thursday 10.11. 15:00 - 17:00 Seminarraum
  • Friday 11.11. 13:00 - 15:00 Seminarraum
  • Thursday 17.11. 15:00 - 17:00 Seminarraum
  • Friday 18.11. 13:00 - 15:00 Seminarraum
  • Thursday 24.11. 15:00 - 17:00 Seminarraum
  • Friday 25.11. 13:00 - 15:00 Seminarraum
  • Thursday 01.12. 15:00 - 17:00 Seminarraum
  • Friday 02.12. 13:00 - 15:00 Seminarraum
  • Friday 09.12. 13:00 - 15:00 Seminarraum
  • Thursday 15.12. 15:00 - 17:00 Seminarraum
  • Friday 16.12. 13:00 - 15:00 Seminarraum
  • Thursday 12.01. 15:00 - 17:00 Seminarraum
  • Friday 13.01. 13:00 - 15:00 Seminarraum
  • Thursday 19.01. 15:00 - 17:00 Seminarraum
  • Friday 20.01. 13:00 - 15:00 Seminarraum
  • Thursday 26.01. 15:00 - 17:00 Seminarraum
  • Friday 27.01. 13:00 - 15:00 Seminarraum

Information

Aims, contents and method of the course

This lecture is intended to deliver an introduction to homological algebra,
as it is needed for algebraic topology, commutative algebra, group theory
and number rtheory. The following chapters are planned:
Module theory (free, projective, flat, divisible and injective modules),
categories and functors (in particular abelian categories), resolutions and
derived functors (projective and injective resolutions, homology, homotopy,
ext-functor, tor-functor), Group homology and cohomology, spectral sequences
(in particular the Hochschild-Lyndon-Serre spectral sequence), and
finally triangulated categories and derived categories.

Assessment and permitted materials

Written exam or oral exam after the end of the lecture.

Minimum requirements and assessment criteria

Accomplishment of the basic methods of homological algebra needed for the
research group algebra

Examination topics

varying

Reading list

K. S. Brown: Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994.

H. Cartan, S. Eilenberg: Homological algebra. Princeton University Press, Princeton, NJ, 1999.

I. Gelfand, Y.I. Manin: Methods of homological algebra, Springer, 2003.

P. Hilton; U. Stammbach: A course in homological algebra, Graduate Texts in Mathematics, Springer-Verlag, New York, 1997.

C.A.Weibel: An introduction to homological algebra, Cambridge, 1994.

Association in the course directory

MALV

Last modified: Mo 07.09.2020 15:40