250057 VO Group theory (2017S)
Labels
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 02.03. 14:00 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 06.03. 14:00 - 15:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.03. 14:00 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.03. 14:00 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.03. 14:00 - 15:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.03. 14:00 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.03. 14:00 - 15:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.03. 14:00 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 03.04. 14:00 - 15:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 06.04. 14:00 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.04. 14:00 - 15:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 27.04. 14:00 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 04.05. 14:00 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.05. 14:00 - 15:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 11.05. 14:00 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.05. 14:00 - 15:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 18.05. 14:00 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.05. 14:00 - 15:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 29.05. 14:00 - 15:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 01.06. 14:00 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 08.06. 14:00 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.06. 14:00 - 15:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 19.06. 14:00 - 15:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 22.06. 14:00 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 26.06. 14:00 - 15:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 29.06. 14:00 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam or oral exam after the end of the lecture.
Minimum requirements and assessment criteria
Basic abstract algebra, i.e., Algebra I.
Examination topics
All topics covered in the lecture.
Reading list
[BOG] Bogopolski, O. Introduction to group theory. European Mathematical
Society (EMS), Zürich, 2008.
[HUP] Huppert, B. Finite Groups. Band 134, Springer-Verlag, 1967.
[ROB] Robinson, Derek J. S., A Course in the Theory of Groups, Springer-Verlag, 1995.
[ROT] Rotman, Joseph J, An introduction to the theory of groups. Springer-Verlag, 1995.
[ZAS] Zassenhaus, Hans J. The theory of groups. Reprint of the 1958 edition,
Dover Publications 1999.
Society (EMS), Zürich, 2008.
[HUP] Huppert, B. Finite Groups. Band 134, Springer-Verlag, 1967.
[ROB] Robinson, Derek J. S., A Course in the Theory of Groups, Springer-Verlag, 1995.
[ROT] Rotman, Joseph J, An introduction to the theory of groups. Springer-Verlag, 1995.
[ZAS] Zassenhaus, Hans J. The theory of groups. Reprint of the 1958 edition,
Dover Publications 1999.
Association in the course directory
MALG
Last modified: Mo 07.09.2020 15:40
by solving algebraic equations (Galois), by solving differential equations (Lie), and
by studying representations (Frobenius).This lecture gives an introduction to modern group theory,
covering the usual material, ranging from subgroups, quotients, homomorphisms,
semidirect products, automorphisms, extensions and Sylow theorems, to solvable and nilpotent groups,
linear groups, free groups, presentation of groups by generators and relations,
free products, and cohomology of groups.