Warning! The directory is not yet complete and will be amended until the beginning of the term.
250057 VO Group theory (2021S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
The course will take place on zoom. The room is: 974 9324 6659
Ask the teacher for the password.
-
Wednesday
03.03.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
10.03.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
17.03.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
24.03.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
14.04.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
21.04.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
28.04.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
05.05.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
12.05.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
19.05.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
26.05.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
02.06.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
09.06.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
16.06.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
23.06.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
30.06.
11:30 - 13:45
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Written or oral exam. In case that presence examination is not possible, written or oral online exam.
Minimum requirements and assessment criteria
Linear algebra I, II and abstract algebra I.To pass the exam.
Examination topics
All topics covered in the lecture.
Reading list
[SER] Jean-Pierre Serre, Finite groups, an introduction. I.
[BOG] Bogopolski, O. Introduction to group theory. European Mathematical Society (EMS), Zürich, 2008.
[BUR] Burde, D. Lecture Notes on Group Theory. Vienna 2017.
[HUP] Huppert, B. Finite Groups. Band 134, Springer-Verlag, 1967.
[ROB] Robinson, Derek J. S., A Course in the Theory of Groups, Springer-Verlag, 1995.
[ROT] Rotman, Joseph J, An introduction to the theory of groups. Springer-Verlag, 1995.
[ZAS] Zassenhaus, Hans J. The theory of groups. Reprint of the 1958 edition, Dover Publications 1999.
[BOG] Bogopolski, O. Introduction to group theory. European Mathematical Society (EMS), Zürich, 2008.
[BUR] Burde, D. Lecture Notes on Group Theory. Vienna 2017.
[HUP] Huppert, B. Finite Groups. Band 134, Springer-Verlag, 1967.
[ROB] Robinson, Derek J. S., A Course in the Theory of Groups, Springer-Verlag, 1995.
[ROT] Rotman, Joseph J, An introduction to the theory of groups. Springer-Verlag, 1995.
[ZAS] Zassenhaus, Hans J. The theory of groups. Reprint of the 1958 edition, Dover Publications 1999.
Association in the course directory
MALG
Last modified: Fr 12.05.2023 00:21
linear groups, free groups, presentation of groups by generators and relations, free products, classical groups and representations of finite groups.