250057 VO Group theory (2025S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 04.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 05.03. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 11.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 18.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.03. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 25.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 01.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 02.04. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 08.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 29.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 30.04. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 06.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 13.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.05. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 20.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 27.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.05. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 03.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.06. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- N Tuesday 17.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
This is an introductory course in combinatorial and geometric group theories. We begin with foundational concepts in finite groups, then transition to modern aspects of infinite, finitely generated groups. Topics include solvable and nilpotent groups, free groups, and group-theoretical constructions such as free amalgamated products, wreath products, and extensions. We will also cover Cayley graphs, quasi-isometries, and their applications to decision problems.
Assessment and permitted materials
The written examination will consist of both theoretical questions and problem-solving exercises.
Minimum requirements and assessment criteria
Prerequisites: basics in Linear Algebra and Algebra.
Examination topics
All the material covered in the lectures.
Reading list
Bogopolski, O. Introduction to group theory. European Mathematical Society (EMS), Zürich, 2008.
Löh, C., Geometric group theory. An introduction. Springer, Cham, 2017.
Rotman, Joseph J, An introduction to the theory of groups. Springer-Verlag, 1995.
Unsolved problems in group theory. The Kourovka notebook (2025). arXiv:1401.0300.
Löh, C., Geometric group theory. An introduction. Springer, Cham, 2017.
Rotman, Joseph J, An introduction to the theory of groups. Springer-Verlag, 1995.
Unsolved problems in group theory. The Kourovka notebook (2025). arXiv:1401.0300.
Association in the course directory
MALG
Last modified: Tu 01.04.2025 16:06