Universität Wien

250057 VO Group theory (2025S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Tuesday 04.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 05.03. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 11.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 18.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 19.03. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 25.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 01.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 02.04. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 08.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 29.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 30.04. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 06.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 13.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 14.05. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 20.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 27.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 28.05. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 03.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 10.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 11.06. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 24.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

This is an introductory course in combinatorial and geometric group theories. We begin with foundational concepts in finite groups, then transition to modern aspects of infinite, finitely generated groups. Topics include solvable and nilpotent groups, free groups, and group-theoretical constructions such as free amalgamated products, wreath products, and extensions. We will also cover Cayley graphs, quasi-isometries, and their applications to decision problems.

Assessment and permitted materials

The written examination will consist of both theoretical questions and problem-solving exercises.

Minimum requirements and assessment criteria

Prerequisites: basics in Linear Algebra and Algebra.

Examination topics

All the material covered in the lectures.

Reading list

Bogopolski, O. Introduction to group theory. European Mathematical Society (EMS), Zürich, 2008.
Löh, C., Geometric group theory. An introduction. Springer, Cham, 2017.
Rotman, Joseph J, An introduction to the theory of groups. Springer-Verlag, 1995.
Unsolved problems in group theory. The Kourovka notebook (2025). arXiv:1401.0300.

Association in the course directory

MALG

Last modified: Tu 01.04.2025 16:06