250059 SE Seminar (Analysis): Nonlinear Functional Analysis (2008W)
Continuous assessment of course work
Labels
Vorbesprechung am Donnerstag, 2. Oktober 2008
Mehr und aktuelle Details unter
http://www.mat.univie.ac.at/~kriegl/LVA-2008-WS.html#250009
Mehr und aktuelle Details unter
http://www.mat.univie.ac.at/~kriegl/LVA-2008-WS.html#250009
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 02.10. 11:15 - 12:45 Seminarraum
- Thursday 09.10. 11:15 - 12:45 Seminarraum
- Thursday 16.10. 11:15 - 12:45 Seminarraum
- Thursday 23.10. 11:15 - 12:45 Seminarraum
- Thursday 30.10. 11:15 - 12:45 Seminarraum
- Thursday 06.11. 11:15 - 12:45 Seminarraum
- Thursday 13.11. 11:15 - 12:45 Seminarraum
- Thursday 20.11. 11:15 - 12:45 Seminarraum
- Thursday 27.11. 11:15 - 12:45 Seminarraum
- Thursday 04.12. 11:15 - 12:45 Seminarraum
- Thursday 11.12. 11:15 - 12:45 Seminarraum
- Thursday 18.12. 11:15 - 12:45 Seminarraum
- Thursday 08.01. 11:15 - 12:45 Seminarraum
- Thursday 15.01. 11:15 - 12:45 Seminarraum
- Thursday 22.01. 11:15 - 12:45 Seminarraum
- Thursday 29.01. 11:15 - 12:45 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Continuous assessment of course work
Minimum requirements and assessment criteria
Working with mathematical literature.
Examination topics
Talks of the students about sections from the literature.
Reading list
Das Buch:
A.Kriegl, P.Michor: The convenient setting of global analysis,
Mathematical Surveys and Monographs, Vol. 53, American Math. Soc. (1997) Providence
online unter
book.pdf'>http://www.mat.univie.ac.at/~michor/apbooks.pdf">book.pdf
A.Kriegl, P.Michor: The convenient setting of global analysis,
Mathematical Surveys and Monographs, Vol. 53, American Math. Soc. (1997) Providence
online unter
book.pdf'>http://www.mat.univie.ac.at/~michor/apbooks.pdf">book.pdf
Association in the course directory
MANS, MGES
Last modified: Mo 07.09.2020 15:40
of the investigation of the convenient differentiation theory
as it was presented in the lecture course during the previous summer term.
Suggested topics are: holomorphic and real analytic functions,
or smooth partitions of unity.