Universität Wien

250059 VO P-adic analysis and number theory 2 (2014S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Tuesday 11.03. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 18.03. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 25.03. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 01.04. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 08.04. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 29.04. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 06.05. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 13.05. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 20.05. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 27.05. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 03.06. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 17.06. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 24.06. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Some of the concepts of algebraic number theory can be generalized to algebraic varieties over number fields. This needs an extension of the methods involved but at teh same time enhances the aplicability of number theoretic concepts. The special case of curves over number fields can be dealt with using rather elementary methods. In the lecture course we want to study the extension of the reciprocity law from (quadratic) number fields to curves. This has application to the construction of extensions of number fields with abelian Galois group. Prerequisites are knowledge of algebraic number theory; knowledge of basic notions from the theory of Riemann surfaces would be helpful. Some results about
algebraic curves will be stated and applied without proof.

Assessment and permitted materials

Oral examination

Minimum requirements and assessment criteria

Understanding the reciprocity law on algebraic curves

Examination topics

Lecture course

Reading list


Association in the course directory

MALV

Last modified: Mo 07.09.2020 15:40