250059 VO Combinatorics (2017S)
Labels
Details
Language: English
Examination dates
- Wednesday 07.06.2017
- Monday 17.07.2017
- Tuesday 18.07.2017
- Thursday 20.07.2017
- Friday 06.10.2017
- Thursday 12.10.2017
- Friday 27.10.2017
- Thursday 21.12.2017
- Wednesday 04.04.2018
- Wednesday 30.05.2018
- Monday 11.06.2018
- Tuesday 26.06.2018
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 01.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 06.03. 08:45 - 10:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 08.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.03. 08:45 - 10:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.03. 08:45 - 10:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 03.04. 08:45 - 10:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 05.04. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.04. 08:45 - 10:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.04. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 03.05. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.05. 08:45 - 10:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.05. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.05. 08:45 - 10:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.05. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.05. 08:45 - 10:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.05. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 29.05. 08:45 - 10:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 31.05. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.06. 08:45 - 10:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 19.06. 08:45 - 10:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 26.06. 08:45 - 10:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Exam at the end of the semester
Minimum requirements and assessment criteria
Examination topics
Reading list
Books to be recommended are:
P. Flajolet, R. Sedgewick, "Analytic Combinatorics", Cambridge
University Press, 2009.
P. J. Cameron, "Combinatorics", Cambridge University Press, 1994.
R. P. Stanley, "Enumerative Combinatorics", Vol. 1, Wadsworth \&
Brooks/Cole, 1986.
D. Stanton und D. White, "Constructive Combinatorics",
Springer-Verlag, 1986.
P. Flajolet, R. Sedgewick, "Analytic Combinatorics", Cambridge
University Press, 2009.
P. J. Cameron, "Combinatorics", Cambridge University Press, 1994.
R. P. Stanley, "Enumerative Combinatorics", Vol. 1, Wadsworth \&
Brooks/Cole, 1986.
D. Stanton und D. White, "Constructive Combinatorics",
Springer-Verlag, 1986.
Association in the course directory
MALK
Last modified: Mo 07.09.2020 15:40
elements of a finite set. The most frequent basic combinatorial objects
are permutations, rearrangements, lattice paths, trees and graphs.
The appeal of combinatorics comes from the fact that there is no uniform
approach for the treatment of the different problems, but many different
methods, each of which providing a conceptual approach to a particular
type of problem, respectively shedding light on these problems from different
angles. The fact that there are no limitations on imagination in
combinatorics has given a boost to this area in the past.
In particular, the interrelations to other areas, such as theory of
finite groups, representation theory, commutative algebra, algebraic
geometry, computer science, and statistical physics, became more and more
important.This course will build on the material of the course
"Diskrete Mathematik". Some topics from there will be treated here
in a more profound manner, and there will be new topics,
to be precise:1. Combinatorial structures and their generating functions
2. P\'olya theory and the enumeration of objects with symmetries
3. Combinatorial theory of partially ordered sets
4. Methods for asymptotic enumeration