250059 VO Diophantine Approximation (2025S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 05.03. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.03. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.03. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 02.04. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 09.04. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 30.04. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.05. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.05. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.05. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.05. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 04.06. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.06. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.06. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- N Wednesday 25.06. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The course deals with: one dimensional approximation ( continued fractions, Theorems of Dirichlet, Kronecker, Liouville and Roth's Theorem), simultaneous approximation (Geometry of Numbers, 1. and 2. Theorem of Minkowski, Minkowski's Theorem on linear forms, Khintchine's Transference principle), Equidistribution
Assessment and permitted materials
Oral exam at the end of the lecture
Minimum requirements and assessment criteria
Examination topics
Contents of the whole lecture
Reading list
W.M. Schmidt: Diophantine Approximation and Diophantine Equations
Gruber, Lekkerkerker: Geometrie der Zahlen
Hlawka, Schoissengeier: Geometrische und analytische Zahlentheorie
JWS Cassels: An introduction to the Geometry of Numbers
Gruber, Lekkerkerker: Geometrie der Zahlen
Hlawka, Schoissengeier: Geometrische und analytische Zahlentheorie
JWS Cassels: An introduction to the Geometry of Numbers
Association in the course directory
MALV
Last modified: Mo 10.02.2025 10:46