250060 VO Algebraic number theory (2011W)
Labels
Details
Language: German
Examination dates
- Wednesday 15.02.2012
- Monday 27.02.2012
- Thursday 01.03.2012
- Wednesday 07.03.2012
- Tuesday 13.03.2012
- Wednesday 21.03.2012
- Thursday 22.03.2012
- Wednesday 11.04.2012
- Tuesday 22.05.2012
- Thursday 31.05.2012
- Wednesday 05.09.2012
- Tuesday 23.09.2014
- Friday 03.10.2014
- Thursday 03.09.2015
- Tuesday 08.03.2016
Lecturers
Classes (iCal) - next class is marked with N
- Monday 03.10. 12:00 - 14:00 Seminarraum
- Tuesday 04.10. 12:00 - 14:00 Seminarraum
- Monday 10.10. 12:00 - 14:00 Seminarraum
- Tuesday 11.10. 12:00 - 14:00 Seminarraum
- Monday 17.10. 12:00 - 14:00 Seminarraum
- Tuesday 18.10. 12:00 - 14:00 Seminarraum
- Monday 24.10. 12:00 - 14:00 Seminarraum
- Tuesday 25.10. 12:00 - 14:00 Seminarraum
- Monday 31.10. 12:00 - 14:00 Seminarraum
- Monday 07.11. 12:00 - 14:00 Seminarraum
- Tuesday 08.11. 12:00 - 14:00 Seminarraum
- Monday 14.11. 12:00 - 14:00 Seminarraum
- Tuesday 15.11. 12:00 - 14:00 Seminarraum
- Monday 21.11. 12:00 - 14:00 Seminarraum
- Tuesday 22.11. 12:00 - 14:00 Seminarraum
- Monday 28.11. 12:00 - 14:00 Seminarraum
- Tuesday 29.11. 12:00 - 14:00 Seminarraum
- Monday 05.12. 12:00 - 14:00 Seminarraum
- Tuesday 06.12. 12:00 - 14:00 Seminarraum
- Monday 12.12. 12:00 - 14:00 Seminarraum
- Tuesday 13.12. 12:00 - 14:00 Seminarraum
- Monday 09.01. 12:00 - 14:00 Seminarraum
- Tuesday 10.01. 12:00 - 14:00 Seminarraum
- Monday 16.01. 12:00 - 14:00 Seminarraum
- Tuesday 17.01. 12:00 - 14:00 Seminarraum
- Monday 23.01. 12:00 - 14:00 Seminarraum
- Tuesday 24.01. 12:00 - 14:00 Seminarraum
- Monday 30.01. 12:00 - 14:00 Seminarraum
- Tuesday 31.01. 12:00 - 14:00 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Written or oral exam after the end of the semester.
Minimum requirements and assessment criteria
We want to give an introduction to the basic concepts and methods of algebraic number theory. This class is intended for students with a knowledge of basic algebra.
Examination topics
The material will be presented by the lecturer.
Reading list
S. Alaca, K.S. Williams, Introductory Algebraic Number Theory
D.A. Marcus, Number Fields
W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers
J. Neukirch, Algebraische Zahlentheorie
I. Stewart, D. Tall, Algebraic Number Theory and Fermat's Last Theorem
H.P.F. Swinnerton-Dyer, A Brief Guide to Algebraic Number Theory
D.A. Marcus, Number Fields
W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers
J. Neukirch, Algebraische Zahlentheorie
I. Stewart, D. Tall, Algebraic Number Theory and Fermat's Last Theorem
H.P.F. Swinnerton-Dyer, A Brief Guide to Algebraic Number Theory
Association in the course directory
MALZ
Last modified: Mo 07.09.2020 15:40
http://www.mat.univie.ac.at/~baxa/ws1112.html