250060 VO Algebraic number theory (2018W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Thursday 31.01.2019 13:15 - 15:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.02.2019
- Tuesday 19.02.2019
- Tuesday 05.03.2019
- Thursday 07.03.2019
- Tuesday 19.03.2019
- Friday 17.05.2019
- Thursday 12.09.2019
- Friday 15.11.2019
- Monday 25.11.2019
- Friday 06.03.2020
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 03.10. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 05.10. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.10. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 12.10. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.10. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 19.10. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.10. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 31.10. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.11. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 09.11. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.11. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 16.11. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.11. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 23.11. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.11. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 30.11. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 05.12. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 07.12. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 12.12. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 14.12. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.12. 11:30 - 13:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 09.01. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 11.01. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 16.01. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 18.01. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 23.01. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 25.01. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 30.01. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Written or oral exam
Minimum requirements and assessment criteria
To pass the written or oral exam
Examination topics
Content of the lecture
Reading list
Neukirch "Algebraische Zahlentheorie"Koch "Algebraische Zahlentheorie"Lang "Algebraic number theory"I. Stewart, D. Tall, Algebraic Number Theory and Fermat's Last TheoremD.A. Marcus, Number FieldsW. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers
Association in the course directory
MALZ
Last modified: Mo 07.09.2020 15:40
attempt to generalize the quadratic reciprocity law to higher
power residues. While the quadratic reciprocity law can be formulated entirely in Q, i.e. it
can be formulated using only rational
numbers the formulation of higher reciprocity laws involves n-th roots of unity, i.e. it
necessarily takes place in a finite extension of Q. This creates the need to consider
finite (i.e. algebraic) extensions of Q - the so called
algebraic number fields - in analogy with Q. The goal of algebraic number theory thus is
to extend the essential properties of
the field Q to finite extensions of Q. Briefly, this means- to find an analogoue in number fields of the ring of integers Z in Q; in particular this analogoue is a ring and it should have some kind of factorization into primes property.
The study of these rings is a fundament of algebraic number theory.- to find an analogoue of the embedding of Q into R (and also into p-adic fields Q_p); this makes possible to relate algebraic numbers to geometry and analysis.If time permits we can occasionally touch on aspects of the modern formulation of
algebraic number theory which evolved in connection
with the geometric interpretation of algebraic numbers.Prerequisites for the course ``Algebraic number theory'' are Algebra 1 and Algebra 2.