250060 VO Algebraic number theory (2021W)
Labels
REMOTE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
The lecture will be held digitally via Moodle.
- Monday 04.10. 13:15 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 06.10. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.10. 13:15 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 13.10. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.10. 13:15 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 20.10. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.10. 13:15 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 27.10. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 03.11. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.11. 13:15 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.11. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.11. 13:15 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.11. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.11. 13:15 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.11. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 29.11. 13:15 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 01.12. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 06.12. 13:15 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.12. 13:15 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.12. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 10.01. 13:15 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 12.01. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.01. 13:15 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.01. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.01. 13:15 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.01. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 31.01. 13:15 - 14:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam at the end of the lecture.
Minimum requirements and assessment criteria
Passing the exam.
Examination topics
Rings of integers, norm, trace and discriminant, ideals of Dedekind rings, finiteness of the class number, Dirichlet's unit theorem, splitting and ramification, cyclotomic fields, valuations and local fields.
Reading list
[BUR] D. Burde, Commutative Algebra, 2009.
[COH] H. Cohen, A course in computational algebraic number theory, 1993.
[KOC] H. Koch, Algebraic number theory, 1997.
[LAN] S. Lang, Algebraic number theory, 1994.
[NEU] J. Neukirch, Algebraic number theory, 1999.
(WAS] L. C. Washington, Introduction to cyclotomic fields, 1997.
[COH] H. Cohen, A course in computational algebraic number theory, 1993.
[KOC] H. Koch, Algebraic number theory, 1997.
[LAN] S. Lang, Algebraic number theory, 1994.
[NEU] J. Neukirch, Algebraic number theory, 1999.
(WAS] L. C. Washington, Introduction to cyclotomic fields, 1997.
Association in the course directory
MALZ
Last modified: Fr 12.05.2023 00:21
in the broadest sense. It is one of the oldest sciences. The main subdivisions of number theory are
elementary number theory, analytic number theory, algebraic number theory, Diophantine geometry,
probabilistic number theory, arithmetic combinatorics and computational number theory.
The aim is to give an introduction to algebraic number theory and to cover some of the classical topics, like rings of integers, norm, trace and discriminant, ideals of Dedekind rings, finiteness of the class number, Dirichlet's unit theorem, splitting and ramification, cyclotomic fields, valuations and local fields, and as a bonus, the Theorem of Kronecker-Weber.