250061 PS Introductory seminar on algebraic number theory (2016W)
Continuous assessment of course work
Labels
Details
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Monday 10.10. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.10. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.10. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 31.10. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.11. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.11. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.11. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.11. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 05.12. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.12. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.01. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.01. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.01. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.01. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Each week the participants announce beforehand for which exercises they are able to present solutions. The previously prepared solution can be used as an aid during the presentation.
Minimum requirements and assessment criteria
Minimum requirements for passing are: solving at least 60% of the exercises, the correct presentation of at least two solutions at the blackboard, and regular participation in discussions. The grade of students who pass is determined in equal parts by the number of exercises solved and the number and quality of the presentations of these solutions.
Examination topics
The exercises will be available at http://www.mat.univie.ac.at/~baxa/bspeWS1617.pdf
Reading list
S. Alaca, K.S. Williams, Introductory Algebraic Number Theory
D.A. Marcus, Number Fields
W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers
J. Neukirch, Algebraische Zahlentheorie
I. Stewart, D. Tall, Algebraic Number Theory and Fermat's Last Theorem
H.P.F. Swinnerton-Dyer, A Brief Guide to Algebraic Number Theory
D.A. Marcus, Number Fields
W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers
J. Neukirch, Algebraische Zahlentheorie
I. Stewart, D. Tall, Algebraic Number Theory and Fermat's Last Theorem
H.P.F. Swinnerton-Dyer, A Brief Guide to Algebraic Number Theory
Association in the course directory
MALV
Last modified: Mo 07.09.2020 15:40
http://www.mat.univie.ac.at/~baxa/ws1617ant.html