Universität Wien

250061 PS Introductory seminar on algebraic number theory (2016W)

2.00 ECTS (1.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work

Details

Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 10.10. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 17.10. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 24.10. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 31.10. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 07.11. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 14.11. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 21.11. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 28.11. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 05.12. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.12. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 09.01. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 16.01. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 23.01. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 30.01. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Exercises and examples will be used to deepen the understanding of the material covered in the lectures on algebraic number theory. The aim is to transform the students' understanding of basic principles into working knowledge. For further information go to
http://www.mat.univie.ac.at/~baxa/ws1617ant.html

Assessment and permitted materials

Each week the participants announce beforehand for which exercises they are able to present solutions. The previously prepared solution can be used as an aid during the presentation.

Minimum requirements and assessment criteria

Minimum requirements for passing are: solving at least 60% of the exercises, the correct presentation of at least two solutions at the blackboard, and regular participation in discussions. The grade of students who pass is determined in equal parts by the number of exercises solved and the number and quality of the presentations of these solutions.

Examination topics

The exercises will be available at http://www.mat.univie.ac.at/~baxa/bspeWS1617.pdf

Reading list

S. Alaca, K.S. Williams, Introductory Algebraic Number Theory
D.A. Marcus, Number Fields
W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers
J. Neukirch, Algebraische Zahlentheorie
I. Stewart, D. Tall, Algebraic Number Theory and Fermat's Last Theorem
H.P.F. Swinnerton-Dyer, A Brief Guide to Algebraic Number Theory

Association in the course directory

MALV

Last modified: Mo 07.09.2020 15:40