250062 VO Differential geometry 1 (2011S)
Labels
Details
Language: German
Examination dates
- Tuesday 26.07.2011
- Friday 09.09.2011
- Monday 03.10.2011
- Wednesday 12.10.2011
- Thursday 13.10.2011
- Friday 14.10.2011
- Wednesday 21.12.2011
- Wednesday 21.12.2011
- Monday 16.04.2012
- Tuesday 21.08.2012
- Monday 22.10.2012
- Tuesday 05.03.2013
- Friday 12.04.2013
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 02.03. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Monday 07.03. 10:00 - 11:00 Seminarraum
- Wednesday 09.03. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 16.03. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Monday 21.03. 10:00 - 11:00 Seminarraum
- Wednesday 23.03. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Monday 28.03. 10:00 - 11:00 Seminarraum
- Wednesday 30.03. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Monday 04.04. 10:00 - 11:00 Seminarraum
- Wednesday 06.04. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Monday 11.04. 10:00 - 11:00 Seminarraum
- Wednesday 13.04. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Monday 02.05. 10:00 - 11:00 Seminarraum
- Wednesday 04.05. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Monday 09.05. 10:00 - 11:00 Seminarraum
- Wednesday 11.05. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Monday 16.05. 10:00 - 11:00 Seminarraum
- Wednesday 18.05. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Monday 23.05. 10:00 - 11:00 Seminarraum
- Wednesday 25.05. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Monday 30.05. 10:00 - 11:00 Seminarraum
- Wednesday 01.06. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Monday 06.06. 10:00 - 11:00 Seminarraum
- Wednesday 08.06. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 15.06. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Monday 20.06. 10:00 - 11:00 Seminarraum
- Wednesday 22.06. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
- Monday 27.06. 10:00 - 11:00 Seminarraum
- Wednesday 29.06. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
Information
Aims, contents and method of the course
Geometry of plane curves, analysis on submanifolds of Euclidean space, vector fields, geometry of hypersurfaces, differential forms; further information is available at http://www.mat.univie.ac.at/~cap/ankss11.html
Assessment and permitted materials
oral exam
Minimum requirements and assessment criteria
Knowledge of the fundamental concepts of analysis on submanifolds of Euclidean space; basics of classical differential geometry of curves, surfaces, and hypersurfaces; basics on the relation between analysis, geometry, and topology.
Examination topics
lecture course
Reading list
Skriptum erhältlich über http://www.mat.univie.ac.at/~cap/lectnotes.html .
Association in the course directory
MGED
Last modified: Sa 02.04.2022 00:24