Universität Wien

250062 VO Differential geometry 1 (2011S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 02.03. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Monday 07.03. 10:00 - 11:00 Seminarraum
  • Wednesday 09.03. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 16.03. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Monday 21.03. 10:00 - 11:00 Seminarraum
  • Wednesday 23.03. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Monday 28.03. 10:00 - 11:00 Seminarraum
  • Wednesday 30.03. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Monday 04.04. 10:00 - 11:00 Seminarraum
  • Wednesday 06.04. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Monday 11.04. 10:00 - 11:00 Seminarraum
  • Wednesday 13.04. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Monday 02.05. 10:00 - 11:00 Seminarraum
  • Wednesday 04.05. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Monday 09.05. 10:00 - 11:00 Seminarraum
  • Wednesday 11.05. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Monday 16.05. 10:00 - 11:00 Seminarraum
  • Wednesday 18.05. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Monday 23.05. 10:00 - 11:00 Seminarraum
  • Wednesday 25.05. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Monday 30.05. 10:00 - 11:00 Seminarraum
  • Wednesday 01.06. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Monday 06.06. 10:00 - 11:00 Seminarraum
  • Wednesday 08.06. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 15.06. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Monday 20.06. 10:00 - 11:00 Seminarraum
  • Wednesday 22.06. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II
  • Monday 27.06. 10:00 - 11:00 Seminarraum
  • Wednesday 29.06. 09:00 - 11:00 Seminarraum 2A310 3.OG UZA II

Information

Aims, contents and method of the course

Geometry of plane curves, analysis on submanifolds of Euclidean space, vector fields, geometry of hypersurfaces, differential forms; further information is available at http://www.mat.univie.ac.at/~cap/ankss11.html

Assessment and permitted materials

oral exam

Minimum requirements and assessment criteria

Knowledge of the fundamental concepts of analysis on submanifolds of Euclidean space; basics of classical differential geometry of curves, surfaces, and hypersurfaces; basics on the relation between analysis, geometry, and topology.

Examination topics

lecture course

Reading list


Association in the course directory

MGED

Last modified: Sa 02.04.2022 00:24