250062 VO Real analysis (2016S)
Labels
Details
Language: English
Examination dates
- Tuesday 30.08.2016
- Friday 14.10.2016
- Thursday 20.10.2016
- Friday 16.12.2016
- Thursday 26.01.2017
- Tuesday 18.04.2017
- Wednesday 19.04.2017
- Thursday 08.06.2017
- Wednesday 26.07.2017
- Wednesday 06.09.2017
- Tuesday 12.09.2017
- Monday 09.10.2017
- Friday 09.02.2018
Lecturers
Classes (iCal) - next class is marked with N
- Friday 04.03. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 18.03. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 08.04. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 15.04. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 22.04. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 29.04. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 06.05. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 13.05. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 20.05. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 27.05. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 03.06. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 10.06. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 17.06. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 24.06. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral examination
Minimum requirements and assessment criteria
Positive examination
Examination topics
Those parts of the provided lecture notes presented in the course
Reading list
Lecture notes will be provided. Further reading:- G. B. Folland, Real analysis, second ed., Pure and Applied Mathematics (New York),
John Wiley & Sons Inc., New York, 1999.- L. Grafakos, Classical Fourier analysis, second ed., Graduate Texts in Mathematics,
vol. 249, Springer, New York, 2008.- Y. Katznelson, An introduction to harmonic analysis, third ed.,
Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004.- E. H. Lieb and M. Loss, Analysis, second ed., Graduate Studies in Mathematics,
vol. 14, American Mathematical Society, Providence, RI, 2001.- W. Rudin, Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987.- E. M. Stein and R. Shakarchi, Real analysis, Princeton Lectures in Analysis, III,
Princeton University Press, Princeton, NJ, 2005.
John Wiley & Sons Inc., New York, 1999.- L. Grafakos, Classical Fourier analysis, second ed., Graduate Texts in Mathematics,
vol. 249, Springer, New York, 2008.- Y. Katznelson, An introduction to harmonic analysis, third ed.,
Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004.- E. H. Lieb and M. Loss, Analysis, second ed., Graduate Studies in Mathematics,
vol. 14, American Mathematical Society, Providence, RI, 2001.- W. Rudin, Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987.- E. M. Stein and R. Shakarchi, Real analysis, Princeton Lectures in Analysis, III,
Princeton University Press, Princeton, NJ, 2005.
Association in the course directory
MANF
Last modified: Mo 07.09.2020 15:40
- Lebesgue measure and integration (convergence theorems, Fubinis theorem,
transformation theorem, etc.)
- L^p spaces (convolution and approximation, dual spaces, interpolation theorems, etc.)
- complex measures, Radon-Nikodym theorem, Lebesgue decomposition
- differentiation and integration (Hardy-Littlewood maximal function, Lebesgue
differentiation theorem, absolutely continuous funkcions, Rademachers theorem, etc.)
- Fourier analysis (Fourier transform, Lemma of Riemann-Lebesgue, Fourier
inversion theorem, Plancherels theorem, Paley-Wiener theorems, etc.)