Warning! The directory is not yet complete and will be amended until the beginning of the term.
250062 VO Applied analysis (2019W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 01.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 04.10. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 08.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 11.10. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 15.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 18.10. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 22.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 25.10. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 29.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 08.11. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 12.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 15.11. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 19.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 22.11. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 26.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 29.11. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 03.12. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 06.12. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.12. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 13.12. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.12. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 10.01. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 17.01. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 24.01. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 31.01. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
an oral presentation is strongly desired
Minimum requirements and assessment criteria
Examination topics
Reading list
C. Schmeiser, "Angewandte Mathematik", lecture notes
P. Grohs, "Time frequency analysis", lecture notes
D. Kammler, "A First Course in Fourier Analysis", Cambridge University Press, revised edition, 2008.
J. W. Goodman, "Introduction to Fourier Optics", Roberts and Company Publishers, 2005.
P. Grohs, "Time frequency analysis", lecture notes
D. Kammler, "A First Course in Fourier Analysis", Cambridge University Press, revised edition, 2008.
J. W. Goodman, "Introduction to Fourier Optics", Roberts and Company Publishers, 2005.
Association in the course directory
MAMA
Last modified: We 03.02.2021 00:24
Starting with the "scaling" of model equations we introduce regular and singular perturbation
theory as a tool for asymptotic expansions in the context of model hierarchies like the transition from Burgers to Hopf equation or Boltzmann to Navier-Stokes to Euler equation.
In a second part we present basic aspects of harmonic analysis and sampling theory and applications in imaging.
We also present the basics of harmonic analysis and sampling theory and applications in imaging.
Methods: Dimensionless variables, scaling, perturbations; continuum mechanics;
multi-scale problems; Fourier transform; Radon transform; mathematical foundations of imaging.
Part of the course consists of examples that the students work out and present on the blackboard.