250063 VO p-adic analysis and number theory (2013W)
Labels
Details
Language: English
Examination dates
- Tuesday 18.02.2014
- Saturday 22.02.2014
- Friday 16.05.2014
- Friday 06.06.2014
- Thursday 26.06.2014
- Monday 25.08.2014
- Thursday 27.11.2014
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 03.10. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 10.10. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 17.10. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 24.10. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 31.10. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.11. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 14.11. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 21.11. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.11. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 05.12. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 12.12. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.01. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.01. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.01. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.01. 12:00 - 14:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The aim of the course is to give an introduction to p-adic analysis and its connections with and applications to number theory. The first such application occured in local class field theory with the explicit computation of the local reciprocity law und in the computation of the zeta function of a projective variety. In recent years this has developed into a p-adic analogon of diophantine geometry in particular with respect to p-adic analoga of cohomology theories. In the course we want to explain the origins and basic ideas of the theory by looking at the simplest example of cyclotomic fields. We will agree on prerequisites and the precise contents of the course in a first meeting on Thirsday 3.10. It would be ideal if participants had a basic knowledge of algebraic number theory in particular of local fields.
Assessment and permitted materials
Oral examination
Minimum requirements and assessment criteria
Knowledge of basic connections between p-adic analysis and number theory and their relevance for some classical problems.
Examination topics
Lecture
Reading list
Association in the course directory
MALV
Last modified: Mo 07.09.2020 15:40