250064 VO Advanced complex analysis (2016W)
Labels
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 06.10. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 07.10. 09:45 - 10:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 13.10. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 14.10. 09:45 - 10:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 20.10. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 21.10. 09:45 - 10:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 27.10. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 28.10. 09:45 - 10:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 03.11. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 04.11. 09:45 - 10:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 10.11. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 11.11. 09:45 - 10:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 17.11. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 18.11. 09:45 - 10:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 24.11. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 25.11. 09:45 - 10:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 01.12. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 02.12. 09:45 - 10:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 09.12. 09:45 - 10:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 15.12. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 16.12. 09:45 - 10:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 12.01. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 13.01. 09:45 - 10:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 19.01. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 20.01. 09:45 - 10:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 26.01. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 27.01. 09:45 - 10:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral examination
Minimum requirements and assessment criteria
Positive examination
Examination topics
Topics presented in the course.
Reading list
Lecture notes will be provided. Further reading:- L. V. Ahlfors, Complex analysis: An introduction of the theory of
analytic functions of one complex variable, Second edition, McGraw-Hill Book
Co., New York-Toronto-London, 1966.- L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Mathematical
Series, No. 26, Princeton University Press, Princeton, N.J., 1960.- H. Cartan, Elementary theory of analytic functions of one or several
complex variables, Dover Publications, Inc., New York, 1995, Translated from
the French, Reprint of the 1973 edition.- J. B. Conway, Functions of one complex variable, second ed., Graduate
Texts in Mathematics, vol. 11, Springer-Verlag, New York-Berlin, 1978.- J. B. Conway, Functions of one complex variable. II, Graduate Texts in
Mathematics, vol. 159, Springer-Verlag, New York, 1995.- H. M. Farkas and I. Kra, Riemann surfaces, Graduate Texts in
Mathematics, vol. 71, Springer-Verlag, New York-Berlin, 1980.- O. Forster, Lectures on Riemann surfaces, Graduate Texts in
Mathematics, vol. 81, Springer-Verlag, New York, 1991, Translated from the
1977 German original by Bruce Gilligan, Reprint of the 1981 English
translation.- R. E. Greene and S. G. Krantz, Function theory of one complex variable,
third ed., Graduate Studies in Mathematics, vol. 40, American Mathematical
Society, Providence, RI, 2006.- L.Hörmander, An introduction to complex analysis in several
variables, third ed., North-Holland Mathematical Library, vol. 7,
North-Holland Publishing Co., Amsterdam, 1990.- R. Narasimhan and Y. Nievergelt, Complex analysis in one variable, second ed.,
Birkhäuser Boston, Inc., Boston, MA, 2001.- W. Rudin, Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987.- E. M. Stein and R. Shakarchi, Complex analysis, Princeton Lectures in Analysis, II,
Princeton University Press, Princeton, NJ, 2003.
analytic functions of one complex variable, Second edition, McGraw-Hill Book
Co., New York-Toronto-London, 1966.- L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Mathematical
Series, No. 26, Princeton University Press, Princeton, N.J., 1960.- H. Cartan, Elementary theory of analytic functions of one or several
complex variables, Dover Publications, Inc., New York, 1995, Translated from
the French, Reprint of the 1973 edition.- J. B. Conway, Functions of one complex variable, second ed., Graduate
Texts in Mathematics, vol. 11, Springer-Verlag, New York-Berlin, 1978.- J. B. Conway, Functions of one complex variable. II, Graduate Texts in
Mathematics, vol. 159, Springer-Verlag, New York, 1995.- H. M. Farkas and I. Kra, Riemann surfaces, Graduate Texts in
Mathematics, vol. 71, Springer-Verlag, New York-Berlin, 1980.- O. Forster, Lectures on Riemann surfaces, Graduate Texts in
Mathematics, vol. 81, Springer-Verlag, New York, 1991, Translated from the
1977 German original by Bruce Gilligan, Reprint of the 1981 English
translation.- R. E. Greene and S. G. Krantz, Function theory of one complex variable,
third ed., Graduate Studies in Mathematics, vol. 40, American Mathematical
Society, Providence, RI, 2006.- L.Hörmander, An introduction to complex analysis in several
variables, third ed., North-Holland Mathematical Library, vol. 7,
North-Holland Publishing Co., Amsterdam, 1990.- R. Narasimhan and Y. Nievergelt, Complex analysis in one variable, second ed.,
Birkhäuser Boston, Inc., Boston, MA, 2001.- W. Rudin, Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987.- E. M. Stein and R. Shakarchi, Complex analysis, Princeton Lectures in Analysis, II,
Princeton University Press, Princeton, NJ, 2003.
Association in the course directory
MANK
Last modified: Mo 07.09.2020 15:40
- Runges theorem and its applications, the inhomogeneous Cauchy-Riemann equation,
the Mittag-Leffler theorem, the Weierstrass factorization theorem
- the Riemann mapping theorem, characterization of simply connected regions,
continuity at the boundary (Caratheodorys theorem), biholomorphisms of annuli
- harmonic and subharmonic functions, the Schwarz reflection principle, Harnacks principle,
the Dirichlet Problem
- elliptic functions, the Weierstrass P-function, modular functions, the Picard theorems
- introduction to Riemann surfaces, analytic continuation, (branched) coverings