Universität Wien

250064 VO Advanced complex analysis (2024W)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Tuesday 01.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 04.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 08.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 15.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 18.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 22.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 29.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 05.11. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 12.11. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 15.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 19.11. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 26.11. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 29.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 03.12. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 10.12. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 17.12. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 07.01. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 10.01. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 14.01. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 21.01. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 24.01. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 28.01. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Aims, contents and method of the course

The course is a continuation of the bachelor course on complex analysis and will treat advanced topics that are part of the classical material in complex analysis.

Topics to be treated include homology, homotopy, factorization of analytic functions, theorems of Weierstrass, Mittag-Leffler, approximation theorem of Runge, Riemann mapping theorem, entire functions, analytic continuation, Hardy spaces, introduction to Riemann surfaces.

There is an accompanying problem seminar class.
Prerequisites: analytic functions and their characterization, line integrals and Cauchy's integral theorem, residue theorem, singularities, Laurent series.

Assessment and permitted materials

The course assessment for the lecture (VO) will be via an oral examination at the end of the course. The course assessment for the tutorials (PS) will be via participation (solving/presenting assigned problems) during the problem seminar.

Minimum requirements and assessment criteria

Satisfactory answer of questions about course’s topics and solution of problems.
To pass, at least half of the questions need to be answered correctly.

Theoretical list of grades:
88-100 sehr gut
75-87 gut
62-74 befriedigend
50-61 genuegend
<50 nicht genuegend

Examination topics

Entire course material

Reading list

John B. Conway, Functions of one complex variable I
E. Stein, R. Shakarchi, Princeton Lectures on Analysis, Vol. 2
W. Schlag, A Course in Complex Analysis and Riemann Surfaces, AMS, Providence, 2014.
L. Ahlfors, Complex analysis
B. Simon, Basic complex analysis
W. Rudin, Real and complex analysis

Association in the course directory

MANK

Last modified: Mo 30.09.2024 10:46