250066 VO Advanced partial differential equations (2024W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 01.10. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 04.10. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 08.10. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 15.10. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 18.10. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 22.10. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 29.10. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.11. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 12.11. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 15.11. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 19.11. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 26.11. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 29.11. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 03.12. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.12. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 13.12. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 17.12. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.01. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 10.01. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 14.01. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.01. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 24.01. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 28.01. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The course gives an overview of some modern methods in the theory of partial differential equations. We treat Sobolev spaces, elliptic equations, parabolic and hyperbolic equations, semigroups, calculus of variations.
Assessment and permitted materials
Oral exam (by appointment).
Minimum requirements and assessment criteria
The ability to reproduce the main arguments treated in the course and the understanding of how they apply to concrete examples of PDEs.
Examination topics
Everything covered in the course.
Reading list
Evans, Lawrence C. Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
Association in the course directory
MANP
Last modified: Fr 28.03.2025 11:06