Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250068 VO Theory of partial differential equations (2011W)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 03.10. 13:15 - 14:45 Seminarraum
  • Thursday 06.10. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
  • Monday 10.10. 13:15 - 14:45 Seminarraum
  • Thursday 13.10. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
  • Monday 17.10. 13:15 - 14:45 Seminarraum
  • Thursday 20.10. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
  • Monday 24.10. 13:15 - 14:45 Seminarraum
  • Thursday 27.10. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
  • Monday 31.10. 13:15 - 14:45 Seminarraum
  • Thursday 03.11. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
  • Monday 07.11. 13:15 - 14:45 Seminarraum
  • Thursday 10.11. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
  • Monday 14.11. 13:15 - 14:45 Seminarraum
  • Thursday 17.11. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
  • Monday 21.11. 13:15 - 14:45 Seminarraum
  • Thursday 24.11. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
  • Monday 28.11. 13:15 - 14:45 Seminarraum
  • Thursday 01.12. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
  • Monday 05.12. 13:15 - 14:45 Seminarraum
  • Monday 12.12. 13:15 - 14:45 Seminarraum
  • Thursday 15.12. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
  • Monday 09.01. 13:15 - 14:45 Seminarraum
  • Thursday 12.01. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
  • Monday 16.01. 13:15 - 14:45 Seminarraum
  • Thursday 19.01. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
  • Monday 23.01. 13:15 - 14:45 Seminarraum
  • Thursday 26.01. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
  • Monday 30.01. 13:15 - 14:45 Seminarraum

Information

Aims, contents and method of the course

We first develop the theory of Sobolev spaces and then apply it to solve elliptic boundary value problems. In particular, we will study approximation- and extension theorems, traces, Sobolev inequalities (Gagliardo-Nirenberg-Sobolev, Morrey, Poincare, ...) and embedding theorems (Rellich-Kondrachov).
Before applying these results to elliptic PDEs we first develop the necessary tools from functional analysis (compact operators, Fredholm alternative, Lax-Milgram,...) and then show existence of weak solutions. By means of energy estimates we then study regularity properties of these weak solutions.

Assessment and permitted materials

Oral exam.

Minimum requirements and assessment criteria

Examination topics

Reading list


L.C. Evans, Partial Differential Equations
R. Adams, Sobolev Spaces
F. Treves, Basic Linear Partial Differential Equations

Association in the course directory

MANP

Last modified: Sa 02.04.2022 00:24