Warning! The directory is not yet complete and will be amended until the beginning of the term.
250068 VO Theory of partial differential equations (2011W)
Labels
Details
Language: German
Examination dates
- Wednesday 22.02.2012
- Friday 24.02.2012
- Thursday 08.03.2012
- Friday 09.03.2012
- Monday 14.05.2012
- Thursday 27.09.2012
- Tuesday 18.12.2012
- Thursday 20.12.2012
- Wednesday 09.01.2013
- Wednesday 16.01.2013
- Monday 29.07.2013
- Monday 30.09.2013
- Thursday 28.11.2013
- Tuesday 20.10.2015
- Thursday 05.11.2015
- Wednesday 28.07.2021
Lecturers
Classes (iCal) - next class is marked with N
- Monday 03.10. 13:15 - 14:45 Seminarraum
- Thursday 06.10. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
- Monday 10.10. 13:15 - 14:45 Seminarraum
- Thursday 13.10. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
- Monday 17.10. 13:15 - 14:45 Seminarraum
- Thursday 20.10. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
- Monday 24.10. 13:15 - 14:45 Seminarraum
- Thursday 27.10. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
- Monday 31.10. 13:15 - 14:45 Seminarraum
- Thursday 03.11. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
- Monday 07.11. 13:15 - 14:45 Seminarraum
- Thursday 10.11. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
- Monday 14.11. 13:15 - 14:45 Seminarraum
- Thursday 17.11. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
- Monday 21.11. 13:15 - 14:45 Seminarraum
- Thursday 24.11. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
- Monday 28.11. 13:15 - 14:45 Seminarraum
- Thursday 01.12. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
- Monday 05.12. 13:15 - 14:45 Seminarraum
- Monday 12.12. 13:15 - 14:45 Seminarraum
- Thursday 15.12. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
- Monday 09.01. 13:15 - 14:45 Seminarraum
- Thursday 12.01. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
- Monday 16.01. 13:15 - 14:45 Seminarraum
- Thursday 19.01. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
- Monday 23.01. 13:15 - 14:45 Seminarraum
- Thursday 26.01. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
- Monday 30.01. 13:15 - 14:45 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
Examination topics
Reading list
L.C. Evans, Partial Differential Equations
R. Adams, Sobolev Spaces
F. Treves, Basic Linear Partial Differential Equations
Association in the course directory
MANP
Last modified: Sa 02.04.2022 00:24
Before applying these results to elliptic PDEs we first develop the necessary tools from functional analysis (compact operators, Fredholm alternative, Lax-Milgram,...) and then show existence of weak solutions. By means of energy estimates we then study regularity properties of these weak solutions.