Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform. NOTE: Courses where at least one unit is on-site are currently marked "on-site" in u:find.

Further information about on-site teaching and access tests can be found at https://studieren.univie.ac.at/en/info.

250068 VO Theory of partial differential equations (2011W)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Monday 03.10. 13:15 - 14:45 Seminarraum
Thursday 06.10. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
Monday 10.10. 13:15 - 14:45 Seminarraum
Thursday 13.10. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
Monday 17.10. 13:15 - 14:45 Seminarraum
Thursday 20.10. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
Monday 24.10. 13:15 - 14:45 Seminarraum
Thursday 27.10. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
Monday 31.10. 13:15 - 14:45 Seminarraum
Thursday 03.11. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
Monday 07.11. 13:15 - 14:45 Seminarraum
Thursday 10.11. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
Monday 14.11. 13:15 - 14:45 Seminarraum
Thursday 17.11. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
Monday 21.11. 13:15 - 14:45 Seminarraum
Thursday 24.11. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
Monday 28.11. 13:15 - 14:45 Seminarraum
Thursday 01.12. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
Monday 05.12. 13:15 - 14:45 Seminarraum
Monday 12.12. 13:15 - 14:45 Seminarraum
Thursday 15.12. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
Monday 09.01. 13:15 - 14:45 Seminarraum
Thursday 12.01. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
Monday 16.01. 13:15 - 14:45 Seminarraum
Thursday 19.01. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
Monday 23.01. 13:15 - 14:45 Seminarraum
Thursday 26.01. 15:05 - 15:50 Seminarraum 2A310 3.OG UZA II
Monday 30.01. 13:15 - 14:45 Seminarraum

Information

Aims, contents and method of the course

We first develop the theory of Sobolev spaces and then apply it to solve elliptic boundary value problems. In particular, we will study approximation- and extension theorems, traces, Sobolev inequalities (Gagliardo-Nirenberg-Sobolev, Morrey, Poincare, ...) and embedding theorems (Rellich-Kondrachov).
Before applying these results to elliptic PDEs we first develop the necessary tools from functional analysis (compact operators, Fredholm alternative, Lax-Milgram,...) and then show existence of weak solutions. By means of energy estimates we then study regularity properties of these weak solutions.

Assessment and permitted materials

Oral exam.

Minimum requirements and assessment criteria

Examination topics

Reading list


L.C. Evans, Partial Differential Equations
R. Adams, Sobolev Spaces
F. Treves, Basic Linear Partial Differential Equations

Association in the course directory

MANP

Last modified: Mo 07.09.2020 15:40