250068 VO Riemannian geometry (2014W)
Labels
On demand, this course it taught in English.
Details
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 01.10. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 08.10. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.10. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.10. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.10. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 05.11. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 12.11. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.11. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.11. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 03.12. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.12. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.12. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.01. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.01. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.01. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.01. 14:05 - 15:55 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Riemannian metrics and Riemannian manifolds; covariant derivative and parallel transport; geodesics, the exponential map, and normal coordinates; various notions of curvature and their geometric interpretation; further topics according to time and the interests of the participants.
Assessment and permitted materials
oral exam after the end of the course
Minimum requirements and assessment criteria
Students gain an overview on the fundamental concepts of Riemannian geometry and know selected results from this area.
Examination topics
lecture course
Reading list
Lecture notes are posted online at http://www.mat.univie.ac.at/~cap/lectnotes.html in parts.
Association in the course directory
MGED
Last modified: Mo 07.09.2020 15:40