250068 VO Wahrscheinlichkeitstheorie und Statistik (2020S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Thursday 09.07.2020 13:00 - 14:30 Digital
- Thursday 24.09.2020 13:00 - 14:30 Digital
- Thursday 10.12.2020
- Friday 18.12.2020
- Monday 11.01.2021
- Friday 12.02.2021
Lecturers
Classes (iCal) - next class is marked with N
For information on home-learning, please refer to the Moodle-page of this course
- Tuesday 03.03. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 05.03. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.03. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.03. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 19.03. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.03. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 26.03. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 31.03. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 02.04. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.04. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.04. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.04. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.04. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.05. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.05. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 12.05. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 14.05. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 19.05. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 26.05. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.05. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 04.06. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.06. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 16.06. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 18.06. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 23.06. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 25.06. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 30.06. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam
Minimum requirements and assessment criteria
Examination topics
Everything presented in the lecture
Reading list
J. Gärtner, Wahrscheinlichkeitstheorie 1, 2007, lecture notes, TU Berlin.A. Klenke, Wahrscheinlichkeitstheorie, Springer, Berlin, 2006H.-O. Georgii, Stochastik: Einführung in die Wahrscheinlichkeitstheorie und Statistik, Walter de Gruyter GmbH & Co KG, 2015.J. T. H. Föllmer, H. Künsch, Wahrscheinlichkeitsrechnung und Statistik, lecture notes, ETHZ, 2013S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.
Association in the course directory
PTS
Last modified: Fr 12.05.2023 00:21
σ−algebra, probability measures, discrete and continuous probability spaces2. Conditional probability and independence of events:
Conditional probability, Bayes' formula, independence, product measures.3. Random variables:
Random variable, distribution, density, discrete distributions ( Bernoulli, binomial, geometric, Poisson), Poisson limit theorem, independent random variables, expected value, variance, covariance, correlation.4. Limit theorems:
Chebychev's inequality, convergence in probability, weak law of large numbers, Hoeffding's inequality, convergence almost surely, strong law of large numbers, convergence in distribution, central limit theorem.5. Elementary statistics:
statistical models, maximum likelihood method, unbiased estimators, consistency of estimators.6. Tests:
Neyman–Pearson framework, Neyman-Pearson lemma.7. Confidence intervals8. Statistical learning theory:
linear regression and outlook to basic statistical learning theory.