250071 VO Lie groups (2021W)
Labels
REMOTE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Monday 31.01.2022
- Monday 28.02.2022
- Monday 02.05.2022
- Monday 22.08.2022
- Wednesday 24.08.2022
- Wednesday 15.02.2023
- Monday 27.02.2023
Lecturers
Classes (iCal) - next class is marked with N
Since the number of registered students for this course exceeds the capacity of the seminar room (due to COVID-restrictions), the lectures will be held online via blackboard collaborate in moodle.
- Friday 01.10. 16:45 - 18:15 Digital
- Monday 04.10. 13:30 - 14:15 Digital
- Friday 08.10. 16:45 - 18:15 Digital
- Monday 11.10. 13:30 - 14:15 Digital
- Friday 15.10. 16:45 - 18:15 Digital
- Monday 18.10. 13:30 - 14:15 Digital
- Friday 22.10. 16:45 - 18:15 Digital
- Monday 25.10. 13:30 - 14:15 Digital
- Friday 29.10. 16:45 - 18:15 Digital
- Friday 05.11. 16:45 - 18:15 Digital
- Monday 08.11. 13:30 - 14:15 Digital
- Friday 12.11. 16:45 - 18:15 Digital
- Monday 15.11. 13:30 - 14:15 Digital
- Friday 19.11. 16:45 - 18:15 Digital
- Monday 22.11. 13:30 - 14:15 Digital
- Friday 26.11. 16:45 - 18:15 Digital
- Monday 29.11. 13:30 - 14:15 Digital
- Friday 03.12. 16:45 - 18:15 Digital
- Monday 06.12. 13:30 - 14:15 Digital
- Friday 10.12. 16:45 - 18:15 Digital
- Monday 13.12. 13:30 - 14:15 Digital
- Friday 17.12. 16:45 - 18:15 Digital
- Friday 07.01. 16:45 - 18:15 Digital
- Monday 10.01. 13:30 - 14:15 Digital
- Friday 14.01. 16:45 - 18:15 Digital
- Monday 17.01. 13:30 - 14:15 Digital
- Friday 21.01. 16:45 - 18:15 Digital
- Monday 24.01. 13:30 - 14:15 Digital
- Friday 28.01. 16:45 - 18:15 Digital
- Monday 31.01. 13:30 - 14:15 Digital
Information
Aims, contents and method of the course
This lecture course serves as a first introduction to the theory of Lie groups. The focus will be on the interrelation between Lie groups and their Lie algebras. Among others, the following topics will be treated: topological properties, matrix groups, exponential map, Lie subgroups, homomorphisms, the Frobenius theorem, group actions, classification of Lie groups, representation theory of compact Lie groups. The lecture will be based on this script: https://www.mat.univie.ac.at/~mike/teaching/ws1920/lg.pdf
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
Working knowledge of course material.
Examination topics
Content of the lecture.
Reading list
Brickell, Clark, Differentiable manifolds.
Cap, Lie Groups.
Chevalley, Theory of Lie groups.
Duistermaat, Kolk, Lie groups.
Hilgert, Neeb, Lie Gruppen und Lie Algebren.
Lee, Manifolds and differential geometry.
Michor, Topics in differential geometry.
Cap, Lie Groups.
Chevalley, Theory of Lie groups.
Duistermaat, Kolk, Lie groups.
Hilgert, Neeb, Lie Gruppen und Lie Algebren.
Lee, Manifolds and differential geometry.
Michor, Topics in differential geometry.
Association in the course directory
MGEL
Last modified: Fr 12.05.2023 00:21