Warning! The directory is not yet complete and will be amended until the beginning of the term.
250071 VO Lie groups (2024W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
These time slots are for both the lecture course and the proseminar, we'll have to decide how to distribute them. My preferred solution would be to use one of the two blocks for the Proseminar every second week, but I am flexible. If you have wishes in that direction, let me know.
- Thursday 03.10. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 10.10. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 17.10. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 24.10. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 31.10. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 04.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.11. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 14.11. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 21.11. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.11. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 02.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 05.12. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 12.12. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.01. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.01. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.01. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.01. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam after the end of the course; no materials permitted.
Minimum requirements and assessment criteria
Fundamental facts on Lie groups, their relation to Lie algebras, their role as groups of symmetries, and on the theory of compact Lie groups and their representations.
The usual standards for the master program will be imposed.
The usual standards for the master program will be imposed.
Examination topics
The contents of the course.
Reading list
Lecture notes will available online via http://www.mat.univie.ac.at/~cap/lectnotes.html .
There may be some small changes or corrections compared to the version from 2022/23 that is currently available online.
The notes also contain information on further literature.
There may be some small changes or corrections compared to the version from 2022/23 that is currently available online.
The notes also contain information on further literature.
Association in the course directory
MGEL
Last modified: Mo 07.07.2025 13:46
Contents: Lie groups and their Lie algebras; Lie subgroups and homogeneous spaces; Frobenius' theorem and existence results; compact Lie groups and their representations, maximal tori, the Peter-Weyl theorem.
For further information, please refer to the preface of the lecture notes, which are available via http://www.mat.univie.ac.at/~cap/lectnotes.html .
I will activate the moodle page of the course which can be used for communication.